8 The Early Universe 11

8.1 Neutrino Decoupling

Neutrinos are kept in equilibrium at high temperatures by reactions involving the
weak nuclear force. To keep the analysis as simple as possible, consider the reaction
where an electron and positron collide to form a neutrino/anti—neutrino pair:

e tet«— v+ (8.1)

At sufficiently high temperatures the reverse reaction is also possible. Hence the
neutrinos are held in equilibrium. However, the cross—section for this reaction is
sensitive to the temperature of the universe and is given by

G2T?
o=-"L
c

(8.2)

where G'r is a constant known as the Fermi constant. This reaction occurs when the
reaction rate exceeds the Hubble time (see Section 7.3). However, condition (7.9)
implies that for the reaction to proceed we must satisfy

oen > H (8.3)

Since the number density of the particles scales as n o« a=® o T°, the left-hand
side of (8.3) falls as 7°. On the other hand, the Friedmann equation implies that
H? « p < T*. Hence, the left hand side of Eq. (8.3) falls with temperature more
rapidly than the right hand side. This implies that when the temperature falls below
a certain critical value, it will no longer be possible to satisfy condition (8.3) and from
that time on, the conversion of electrons and positrons into neutrinos (and vice—versa)
ceases.

A full analysis indicates that the critical temperature is of the order of 10'°K.
Now, once the neutrinos have decoupled they cease to interact with the matter and so
should survive through to the present epoch. Since they were in thermal equilibrium,
they should remain so at the present time. A fundamental prediction of the hot big
bang model therefore is that the universe should be bathed in a neutrino background
in much the same way that it is bathed in the cosmic microwave radiation'®.

We might expect the temperature of the neutrinos should match that of the cosmic
microwave background (T1,q = 2.728 K), since the energy density of both the neutrinos
and photons scale as 7. However, there is a subtlety that makes the radiation
temperature slightly higher. The subtlety is that when the neutrinos decouple —
that is, when the reaction (8.1) ceases — the temperature is still above the limiting
temperature for the electrons to be relativistic, i.e., kgT > m.c* ~ 0.5 MeV. (See

18Such a background of neutrinos has yet to be discovered and it remains difficult to see how such
a detection could be made since neutrinos interact so weakly with matter.
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Problem Sheet 6, Question 3). Hence, two photons can still collide and convert into
an electron—positron pair, as outlined in Section 7.4:

Y+y—e et (8.4)

This reaction is possible as long as the temperature exceeds 1 MeV , i.e., 6 x 10°K.
When the temperature falls to this critical value, the photons lack sufficient energy
to convert into mass and the result is that the electrons and positrons rapidly anni-
hilate into photons. Consequently, the number of photons rapidly increases. Indeed,
conservation of number densities implies that the total number density of electrons,
positrons and photons before annihilation must equal the number density of photons
afterwards:

(ne* + Net+ + n’Y)before - n7|after (85)

The crucial point is that the temperature of the photons before the electrons and
positrons annihilate is equal to that of the neutrinos. On the other hand, the photons
receive extra energy as the electrons and positrons annihilate, whereas the neutrinos
do not because they are already decoupled. Furthermore, as we saw in the previous
subsection, a fermion at a temperature 7" may be viewed as a boson with a corrected
degeneracy factor. Such a result applies here with respect to the number density of
the electrons. Integrating Eq. (7.12) yields the number density of relativistic electrons
as

Arge (>  p’dp
Ne = h3 /O epc/ksT +1 (86)
and due to the identity (7.16) we may rewrite this as
_Amg [ [ pldp o [ p°dp
e = h3 /0 epc/ksT —_ 1 /0 e2rc/kpT _ 1
4mg, 11 o pidp
=T 13 e )

where we make the substitution ¢ = 2p in the second integral on the first line of this
expression.
In other words, remembering that electrons and photons have the same degeneracy
factor of 2, the number density of the electrons is just 3/4 that of the photons:
3

ne = 1y (8.8)

Hence!?

3 3 10
(Z + Z + 1) n’Y|before = Zn’Y‘before = n’y‘after (89)

19 Actually, the proper way to calculate the temperature is in terms of entropy conservation and
this gives a factor of 11/4 rather than 10/4. However, as we have not looked at entropy in this
course, we would need to do extra work to proceed along such lines. The calculation outlined here
suffices.
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It follows, therefore, that since n oc T° that

10 10
_T3|before = S‘before = Tg‘a.fter (810)

47 4
Since the neutrino and photon temperatures both scale after this event as 1/a, we
may conclude that the present—day temperature of the neutrino background should
be
4 1/3
TI/,O - (E) Trad,O = 2K (811)
The detection of such a background would be a major triumph for the big bang model.

8.2 Photon to Baryon Ratio

We have seen that our observations indicate that the universe is (probably) dominated
by a cosmological constant today, making up 70% of the density, with the remaining
30% comprised or ordinary pressureless matter. There is also the cosmic microwave
background (CMB) radiation. This radiation appears to have the same properties
regardless of the direction it comes from. Its spectrum is that of a (thermal) black
body distribution with a temperature 7" = 2.728 +0.004 K. The peak of the spectrum
is in the microwave wavelength range.

We have neglected the effective density of this radiation in our discussions thus
far. We now justify this by calculating the effective mass density of the radiation
relative to the critical density at the present epoch, i.e., Qraq = praa/pe-

Recall from Eq. (3.15) that the energy density of radiation at a temperature 7' is
given by

€raq = T* (8.12)
where the constant of proportionality
w2k}
a=-——=7565x10 % Jm 3K (8.13)
15h°c3

is known as the radiation constant. For the observed temperature of the CMB this
implies that
€rado = 419 x 10 Jm 3 (8.14)

A given energy density can be related to a mass density as a consequence of Einstein’s
relation £ = mc?. Hence,

Prago = =90 — 4,66 x 107% kgm™? (8.15)
C

where we make use of the fact that 1J = 1 kgm?sec™ (see Appendix A). Converting
this into the fraction of the total density then implies that

Qrad0 = Z 20 — 9.47 x 1075h2 (8.16)
crit,0

70



where we have employed the expression (4.1) for the critical density. Thus, the
fraction of matter in the universe in microwave radiation today is indeed small when
compared to that of the matter, {2, ~ 0.3, and we are justified in neglecting it in
earlier Sections.

Now that we have introduced the idea that the radiation can be thought of in
terms of particles (photons), an interesting (and important) question to answer is
how many photons are there in the universe compared to the number of baryons?
We denote the number density of photons by n, and the number density of baryons
(protons and neutrons) by np. Since density scales as the inverse of volume as the
universe expands, n,/np = constant. This is important because if we can determine
this ratio today, we can determine it for all times and, in particular, at times when
the universe was very much smaller and hotter than it is at present.

The mean energy of a photon in a blackbody distribution is (see Section 3.2)

(E) =~ 3kpT (8.17)

For a temperature T = 2.728 K, this implies that (F) ~ 1.13 x 10722 J. Thus, the
number density of photons in the universe today is

€raa 419 % 1014

-3 8 -3
~ = 3.7 % 10 8.18
(B) “113x 102" St (8.18)

Ny =

In other words, at least in outer space, there are almost a billion (10°) photons per
cubic metre. How does this compare with the number density of baryons? We shall
see in the lectures on primordial nucleosynthesis that the baryons in the universe
contribute a fraction Qp = pp/p. ~ 0.02h2 to the total density at the present
epoch. Converting this to an energy density

€Bo = ppc = pSlpc =338 x 107 Jm? (8.19)

Assuming a mass—energy of mpc? ~ 939 MeV ~ 1.5 x 107°J for baryons then
implies that

npo = —2— ~0.22m "> (8.20)
mpc
and we deduce that n
— ~ 1.7 x 10° (8.21)

np

This implies that there are 1.7 x 10° photons for every baryon in the universe. This
is valid today and in the very early universe since the ratio is time-independent. The
photons dominate numerically but most of the density comes from the baryons.

8.3 The Origin of the Microwave Background

We can now explain the origin of the cosmic microwave background. The key point
is that above a critical temperature, a hydrogen atom becomes ionized. Specifically,
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the ionization energy of the hydrogen atom is Fi,, = 13.6eV — it takes this amount of
energy to excite the electron in its ground state sufficiently for it to escape from the
nucleus of the atom. At sufficiently high temperatures (early times) the energy of the
photons in the universe exceeded this critical value and the hydrogen was therefore
ionized. Let us consider some early era when the universe consisted of a hot, ionized
plasma, of free nuclei, electrons and photons. The radiation interacted primarily with
the free electrons through Thompson scattering — the process where X-rays scatter
from free electrons.

As the universe expanded, its temperature dropped. Eventually the photons
lacked sufficient energy to keep the hydrogen ionized. The electrons were therefore
able to combine with the nuclei with the result that no naked electric charge remained
in the universe. Consequently, the photons were no longer able to interact directly
with the matter and were able to propagate unhindered. The temperature when this
occurred is known as the decoupling temperature, Tye., since the matter and radiation
effectively decoupled from one another at this time. The radiation has remained es-
sentially undisturbed through to the present day, although it has lost energy due to
the expansion of the universe. It is this radiation that we identify with the cosmic
microwave background.

The mean energy of a photon in a blackbody distribution is given by Eq. (8.17),
(E) =~ 3kgT. We might think, therefore, that when the mean energy of photons fell
below the hydrogen ionization energy, the electrons were able to bind to the nuclei.
This is not so however. The form of the blackbody distribution implies that a small
fraction of the photon distribution has an energy much greater than the average (see
the Figure of the microwave background spectrum and Eq. (3.12)). This fraction is
exponentially suppressed and specifically the fraction of photons exceeding a given
energy I at a temperature T is given by exp|—1/(kpT)]. Thus, the number density
of photons, n;.,, capable of ionizing a hydrogen atom at temperature 7" is

Eion:|
kgT

Njon

Ty

= exp (8.22)
where Ej,, = 13.6eV. Consequently, even after the mean photon energy fell below
the hydrogen ionization energy, there were still some photons with an energy in excess
of Eion-

Now, there are many more photons in the universe than there are electrons. Since
the universe is electrically neutral, the number density of electrons is the same as
that of the protons, so n, = ng &~ 10™n,, as follows from Eq. (8.21). Thus, we may
rewrite Eq. (8.22) as

Eion
~ 10% exp [ ] (8.23)

Ne ng

If we need just one photon to have sufficient energy to ionize a hydrogen atom, then a
neutral hydrogen atom can not form until nj,, < n, and from Eq. (8.23) this implies
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that neutral hydrogen forms when the temperature has fallen to

13.6
Thee & ————— ~ 7500 K 24
tee N gy P 7500 (8.24)

This calculation is is not precisely accurate, but all of the essential physics is there.
(It turns out that there are additional corrections to the exponential suppression
factor in Eq. (8.22), but we would need another lecture to consider these in detail.
The above analysis suffices to highlight the important physics). The full calculation
implies that the decoupling temperature is

Tyec = 3000 K (8.25)

This implies that the matter and radiation decoupling when the universe was one
thousandth its present size, i.e., at a redshift of zge. &~ 1000.

After decoupling, the matter and radiation evolve independently. Since the tem-
perature of the radiation falls inversely with the scale factor according to Eq. (7.1),
the thermal distribution of the radiation also evolves. However, the blackbody form
of the spectrum is preserved. Returning to Eq. (3.12), we know that the temperature
falls as a~! but so does the frequency, f, since f oc A~! o< a~!. Hence, the form of the
denominator on the right hand side of Eq. (3.12) is independent of the scale factor.
For a given frequency interval, the numerator falls as the inverse of the volume of the
universe, f3 oc a3, and this is precisely how an density should fall.

As a result, after decoupling has been completed, the blackbody form of the
spectrum is preserved, but its temperature falls inversely with the scale factor. Indeed,
the radiation remains in a thermal distribution through to the present epoch. This is
a very important conclusion. It implies that if thermal equilibrium was established at
some early time, then the thermal distribution survives through to later times. The
origin of the cosmic microwave radiation that we observe today is therefore explained
in the hot big bang model. This radiation is the radiation that is left over from
the early universe when the universe was so hot that neutral atoms could not form
and the charged matter and radiation interacted sufficiently frequently for thermal
equilibrium to be established. The reason why the microwave background is a black
body s that it was once in thermal equilibrium with the matter when the universe was
much younger and hotter then it is today.

8.4 Relationships between Temperature and Age of the Uni-
verse

We can now proceed to derive some important expressions that relate the temperature

of the universe to its age.

Firstly, we should note that in the arena of the early universe, it is consistent to
neglect the effects of the curvature term, kc?/a?, in the Friedmann equation. This
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follows since the densities of relativistic and non-relativistic particles scale as ppg
a~* and puonrel X @2, respectively. Thus, as a — 0, the densities diverge more rapidly
than the curvature term. (An alternative way of seeing this is provided in the answer
to question 4 of Exercise Sheet 6).

Now, we can view the universe today as a mixture of relativistic and non-relativistic
particles, or equivalently, as radiation and pressureless matter. Taking the ratio of
their respective densities implies that

Tre. Qre 1
Prel _ 2ol o = (8.26)

Prnonrel Qnonrel a
and fixing values to the present-day, we deduce that

Qrel — ( Qrel ) @ (827)
Qnonrel Qnonrel 0o a

We have seen that today that the density of radiation is Qg9 = 2.47 x 107°h 2.
However, we should also account for the contribution of the three neutrino species,
Q,. We would expect the contribution of the neutrinos to be similar. As is outlined in
Questions 1 and 2 of Exercise Sheet 7 and Section 8.1, this is indeed the case, but there
is a slight difference in the numerical value. It turns out that the present temperature
of the neutrinos is slightly lower, at 7, = 2 K, than that of the microwave radiation.
This implies that the density of neutrinos is also slightly lower and it can be shown
that €,0 = 0.68.q0. Thus, the total fractional contribution of relativistic particles
today is

Qreltor,0 = 4.17 x 107°h 2 (8.28)

In what follows we are going to assume that the cosmological constant is zero.
One reason for this is that although there is evidence, as we have seen in Section
6, for a non—zero cosmological constant, this is by no means universely accepted at
present. Secondly, if such a term really is present, it will not significantly affect the
forthcoming conclusions, because it has only just started to dominate at the present
epoch. Thirdly, and by no means least, the equations have a much simpler form if we
neglect this term!

In the absence of a cosmological constant, the current density of non-relativistic
matter is just €. Thus, substituting this and Eq. (8.28) into Eq. (8.27) implies that
the ratio of densities of relativistic to non-relativistic matter is related to the size of
the universe by

Dt 417 x 107 ag
Qnonrel QOhZ a

This is an important equation because it enables us to compute the relative
amounts of the different types of matter present in the universe at different eras.
For example, we have seen that the matter and radiation decoupled when the uni-
verse was one thousandth its present size, i.e., a = 10 3aq. Thus, at that time,

Qg 0.04
Qnonrel - g20h2

(8.29)

(8.30)
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Since, roughly speaking, Qyh? = O(1), this implies that non-relativistic matter dom-
inated the radiation at decoupling. There existed an earlier time, known as the
epoch of matter-radiation equality, and denoted t.,, when the densities were equal,
Qrel = Qnonrel- We find from Eq. (8.29) that the scale factor at that time was

1

a(teq) = aeq = mao (831)

Thus, when a > a.q, non-relativistic matter dominates the universe and for a < @eq,
relativistic matter dominates. We say that the universe is radiation dominated for
t < teq and matter dominated for ¢ > t.,. This provides a more heuristic estimate
of the epoch of matter—radiation equality than that deduced from the solution to the
Friedmann equation we derived in Section (3.4).

We now calculate when this transition between matter and radiation domination
occurred. The first point to note is that in the early universe, the curvature term
k/a? in the Friedmann equation becomes negligible relative to the matter and radia-
tion since their densities vary as =2 and a~*, respectively, and therefore grow more
rapidly as @ — 0. Thus, it is a good approximation to neglect the curvature term in
the Friedmann equation at early times. (See Problem Sheet 3, Question 1). Conse-
quently, let us return to the Friedmann equation (2.27) for £ = 0 when the universe
is radiation—dominated:
a> 871G peqle,

az 3a*
where we have normalized the radiation density at the epoch of matter-radiation
equality. For simplicity, we also neglect the small numerical correction that arises by
considering the different weighting of fermion and bosopn particles. This does not
affect the argument (see Question 2, Exercise Sheet 6).

Integrating and converting to temperature via Eq. (3.15) (and remembering to
convert from energy density to mass density) implies that

(8.32)

— (8.33)

However, from Eq. (3.15), , the density of radiation at a temperature Ty is peq =
oTy /¢®. Substituting into Eq. (8.33) implies that

32rGa\ M4 1 o alel AN T

T= (7302 ) m = 7457},305 m if T > Teq (834)
Eq. (8.34) is another key relation, because it measures the temperature of the
universe (before the epoch of matter-radiation equality) directly to its age. We refer
to it as the Temperature—Time Relation. The precise relationship is determined
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in terms of the four fundamental constants of nature, {G, ¢, h, kg} and numerically,

-1/2
T =1.5x 10'° (i) K
sec

£\ 172
kpT = 1.3 (—) MeV (8.35)
sec
We see then that when the universe was about one second old, the temperature was
of the order 10!° K, comparable to the temperature of the sun’s core. In particular
nuclear reactions occur for T > 10°K, corresponding to ¢ < 400s. The maximum
energy scales that the world’s most powerful particle accelerators can probe are 1 TeV,
corresponding to ¢t ~ 107'2s. In some sense, these accelerators probe the physics that
operated in the universe when it was at that age. Any earlier epoch can not be directly
probed by earth—based experiments. We shall see after the Sections on inflation that
cosmology may provide a unique window to higher energy scales and earlier times.
It is important to emphasize that Eq. (8.34) holds for 7' > T,,. For temperatures
below this critical value, the universe is dominated by pressureless matter and we have
T x o' o t72/3 where again we neglect the small difference that arises in the time
dependence due to spatial curvature. In this case, we may normalize at the present
epoch, T = Ty(to/t)?/?, where the present time t, denotes the age of the universe.
Taking the value (5.47), to = 6.5h71 Gyr, for the age and Ty = 2.7K for the present
temperature then implies that

t -2/3
T=94x10"p723( — K if T<T, (8.36)
SeC d

Moreover, since @eq/ay = (teq/to)?/?, it follows from Eq. (8.31) that the epoch of
matter-radiation equality occurs at a time

teq = 2.7 x 107705 *h 34 = 170005 >/ >h~ yr (8.37)
and from Eq. (8.36), this occurs at a temperature
Toq = 66,000Q0h% K (8.38)

It is interesting to note that the temperature and age of the universe at matter—
radiation equality is sensitive to the two key cosmological parameters 2y and h (the
reduced Hubble constant). A precise measurement of these parameters then deter-
mines the numerical value of the temperature at that time. The temperature T, is
much higher than the decoupling temperature (8.25) of 3000 K and indeed we deduce
from Eq. (8.36) that decoupling occurs when the age of the universe is

tgec = 175,000 ' yrs (8.39)

Thus, the epoch of decoupling occurs after the epoch of matter-radiation equality.
To summarize this Section, therefore, we have seen then that as we go back in time
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Fig. (8.1). A schematic plot comparing the timescales and epochs of matter—radiation equality
and matter—radiation decoupling to the present epoch. Note how the factor of three appears in the
numerical estimates.

the matter and radiation are coupled during the first 300,000 years of the universe’s
existence (for A ~ 0.65) and the universe becomes effectively matter dominated some
6000 years or so after the big bang. It is dominated by radiation and relativistic
particles before this time. A timeline outlining these significant events in the history
of the universe is shown in Fig. (8.1). The next epoch of interest occurs a few minutes
after the big bang — this is the epoch of primordial nucleosynthesis and the subject
of the next Section.
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