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Black Holes

General idea

Let us consider ds for test particle in rest, i.e. put dr = dθ = dφ = 0, in this case

ds2 = g00dx02
,

If g00 = 0 then ds2 = 0, which means that the world line of particle in rest is the world line of
light, hence at the surface g00 = 0 no particle with finite rest mass can be in rest. Thus the surface
g00 = 0 is the limit of stationarity.

Let us consider a surface F (r) = const and let ni = F,i is its normal.
If g11 = 0 then

giknink = g11n1n1 = 0,

which means that ni is null vector and any particle with finite rest mass can not move outward
the surface g11 = 0, thus this surface is the event horizon.

Schwarzschild Black Holes

Schwarzschild metric has the following form:

ds2 =
(
1− rg

r

)
c2dt2 − dr2(

1− rg

r

) − r2
(
sin2 θdφ2 + dθ2

)
,

where
rg = 2GM/c2 = 3(M/M�) km, where M� is the mass of Sun

is the gravitational radius.

There is no singularity at r = rg.:
Using the coordinate transformations

cτ = ct +
∫

r
1/2
g r1/2dr

r − rg
, R = ct +

∫
r3/2dr

r
1/2
g (r − rg)

we can show that the Schwarzschild metric is not singular at r = rg and takes the following form

ds2 = c2dτ2 − rg

r
dR2 − r2(dθ2 + sin2 θdφ2).

Indeed, by differentiating

cdτ = cdt +
r
1/2
g r1/2dr

r − rg
, dR = cdt +

r3/2dr

r
1/2
g (r − rg)

,

and then subtracting the first from the second we have

dR− cdτ =
dr

r − rg

(
r3/2

r
1/2
g

− r1/2
g r1/2

)
=

1



=
r1/2dr

(r − rg)r
1/2
g

(r − rg) =
(

r

rg

)1/2

dr,

hence

dr =
(rg

r

)1/2

(dR− cdτ).

Subtracting the first multiplied by r/rg from the second we have

r

rg
cdτ −DR = cdt(

r

rg
− 1),

hence

cdt =
crdτ − rgdR

r − rg
.

Then substituting the expressions for dr and cdt into ds2 in the Schwarzschild form we obtain

ds2 =
r − rg

r

(
rcdτ − rgdR

r − rg

)2

− rg

r − rg
(dR− cdτ)2 − r2(dθ2 + sin2 θdφ2) =

=
1

r − rg

[
1
r
(rcdτ − rgdR)2 − rg(dR− cdτ)2

]
− r2(dθ2 + sin2 θdφ2) =

=

[
c2dτ2(r − rg)− 2cdRdτ(

rgr

r
− rg)− dR2(

r2
g

r
− rg)

]
− r2(dθ2 + sin2 θdφ2) =

= c2dτ2 − rg

r
dR2 − r2(dθ2 + sin2 θdφ2).

From
r1/2dr = r1/2

g d(R− cτ)

we have
2
3
r3/2 = C + r1/2

g (R− cτ),

then choosing the constant of integration C = 0 so that r = 0 → R− cτ = 0, we have

r =
[
3
2
r1/2
g (R− cτ)

]2/3

.

Finally putting this into the metric in new coordinates we have

ds2 = c2dτ2 −
[

2rg

3(R− cτ)

]2/3

−
[
3
2
r1/2
g (R− cτ)

]4/3

(dθ2 + sin2 θdφ2),

we can see that the metric depends on τ , which means that the gravitational field is non- stationary.
We can see that there is no singularity at r = rg.
The equation ds2 = 0 for dθ = dφ = 0 gives

c
dτ

dR
= ± 1[

3
2rg

(R− cτ)
]1/3

= ±
√

rg

r
.

Two signs correspond to boundaries of light cone, i.e. ”+” corresponds to outward photon and
”-” corresponds to inward photon.

When r > rg straight line r = const falls inside the light cone.
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If r < rg we have |cdτ/dR| > 1 so the line r = const lies outside light cone, which means no
particles can be at rest in this region.

We see also that all world lines intersect the line r = 0. Thus r = rg is event horizon and lies
on light cone, hence event horizon is the null surface.

The motion of a particle in the gravitational field of a Schwarzschild black
hole

The Hamilton-Jacobi equation again:

gik ∂S

∂xi

∂S

∂xk
−m2c2 = 0,

where four-momentum pi = − ∂S
∂xi and p0 = E (energy), p3 = L (angular momentum).

It is possible to show that

E
(
1− rg

r

)−1 dr

dt
= c
√

E2 −U2
eff ,

where Ueff is the “effective potential energy”:

Ueff (r) = mc2

√(
1− rg

r

)(
1 +

L2

m2c2r2

)
.

Here L is the angular momentum and m is the mass of a particle.

Ueff can be used to find stable and unstable circular orbits.
For given radius Ueff is equal to the energy of a particle which has the turn point for this r, i.e.
dr/dt = 0, thus the condition E > Ueff determines the admissible range of the motion.

All circular orbits are determined by simultaneous solution of the equations

Ueff = E and
dUeff

dr
= 0.
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Kerr Black Holes

The Kerr metric describing the gravitational field of rotating bodies has the following form:

ds2 = (1− rgr

ρ2
)dt2 − ρ2

∆
dr2 − ρ2dθ2 − (r2 + a2 +

rgra
2

ρ2
sin2 θ) sin2 θdφ2

+
2rgra

ρ2
sin2 θdφdt,

where ρ2 = r2+a2 cos2 θ, ∆ = r2−rgr+a2, and a = J
mc , where J is the specific angular momentum.

For the Kerr metric g00 = 0 gives
1− rgr

ρ2
= 0,

thus
r2 − rgr + a2 cos2 θ = 0,

∆ = r2 − rgr + a2 = 0,

and

rst =
1
2
(rg ±

√
r2
g − 4a2 cos2 θ) =

rg

2
±
√

(
rg

2
)2 − a2 cos2 θ.

The location of horizon in the Kerr metric: g11 = 0 (g11 = ∞) corresponds to

∆ = r2 − rgr + a2 = 0,

and

r =
1
2
(rg ±

√
r2
g − 4a2 cos2 θ) =

rg

2
±
√

(
rg

2
)2 − a2 cos2 θ.

rhor =
rg

2
±
√(rg

2

)2

− a2.

The region between the limit of stationarity and the event horizon is called the ”ergosphere”.
By the Penrose mechanism it is possible to extract rotational energy of Kerr black hole.
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Kerr black holes and the Equivalence Principle

According to the Equivalence Principle the observer is not able to distinguish between the gravi-
tational field and some non-inertial reference frame. In the case of the gravitational field described
by the Kerr metric the corresponding non-inertial reference frame is the rotating one.

Example. How to find its angular velocity?

For dr = 0 and dθ = π/2
ds2 = g00c

2dt2 + 2g03cdtdφ + g33dφ2 =

= g00c
2dt2 + g33

(
dφ2 +

2g03cdtdφ

g33
+

g2
03

g2
33

)2

− g2
03

g33
c2dt2 =

=
(

g00 −
g2
03

g33

)
c2dt2 + g33

(
dφ +

g03

g33
cdt

)2

= g̃00c
2dt2 + g33 (dφ− Ωdt)2 ,

where
Ω = −g03

g33
.

The following transformation of coordinates

g̃00t = t̃, g33 = r̃2, φ− Ωt = φ̃,

brings the metric to the form
ds2 = c2dt̃2 − r̃2dφ̃2,

which is locally galilean metric. Hence locally the observer can not discriminate between the Kerr
gravitational field and non-inertial frame of reference rotating with angular velocity Ω.
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