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Black Holes

General idea

Let us consider ds for test particle in rest, i.e. put dr = df = d¢ = 0, in this case
ds® = 900d$027

If goo = 0 then ds? = 0, which means that the world line of particle in rest is the world line of
light, hence at the surface ggg = 0 no particle with finite rest mass can be in rest. Thus the surface
goo = 0 is the limit of stationarity.

Let us consider a surface F'(r) = const and let n; = F; is its normal.

If g = 0 then

g"*niny = g"*ning =0,

which means that n; is null vector and any particle with finite rest mass can not move outward
the surface g'' = 0, thus this surface is the event horizon.

Schwarzschild Black Holes

Schwarzschild metric has the following form:

dr?

()

ds® = (1 — r—g> Adt? — —r? (sin2 0dg® + d02) ,

r

where
ry =2GM/c* = 3(M/Mg) km, where M, is the mass of Sun

is the gravitational radius.

There is no singularity at r = ry.:
Using the coordinate transformations

T;/2T1/2d’l" r3/2dy
cr=ct+ | ———, R=ct+ TN
r—="Tyg rg' " (r—ry)
we can show that the Schwarzschild metric is not singular at r = r, and takes the following form
ds? = Pdr® — "2dR? — r2(d6® + sin® 0d¢?).
r
Indeed, by differentiating
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and then subtracting the first from the second we have

d 3/2
dR — cdt = o <T1/2 _ T;/2T1/2> _
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ri/2dy r\ 2
= —75 (r—rg)= () dr,
(r—rg)rg

hence

dr = (%)1/2 (dR — cdr).
Subtracting the first multiplied by r/r, from the second we have
%cdr — DR = cdt(é -1,
hence

crdr —rqgdR
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Then substituting the expressions for dr and cdt into ds? in the Schwarzschild form we obtain

9 T —r1g (redT —rgdR g Tg 220902 | 02742
ds? — - (dR — cdT)” — r?(df” + sin® 0d¢p”) =

r rT—"Tg r—"Tg

_ ! [1(rcd7 —r4dR)* —ry(dR — cd7)2] —7r2(df? + sin? 0d¢?) =
r— 7"9 T
2
- [c2d72(r —ry) — 2cdeT(% —ry) — dRZ(%g - frg)] — 12(d6? + sin® 0d¢?) =

= 2dr? — "2 dR? — 12(d6? + sin? §d¢?).
r
From
r/2dr = r;/Qd(R —cr)

we have

2
57‘3/2 =C+ r;/Q(R —c7),

then choosing the constant of integration C' =0 so that r =0 — R — ¢7 = 0, we have
ERE RPN
r= [27"9 (R CT):| .
Finally putting this into the metric in new coordinates we have
o 2/3 3 4/3
ds® = c*dr* — [3(9)} - [ ri/2(R - CT)] (d6? + sin® 0dp?),

R—ct 29

we can see that the metric depends on 7, which means that the gravitational field is non- stationary.
We can see that there is no singularity at r = r,.
The equation ds? = 0 for df = d¢ = 0 gives

dT—i 1 _ 4"

Cﬁ = [%(R_CT):F/B r

Two signs correspond to boundaries of light cone, i.e. 747 corresponds to outward photon and
corresponds to inward photon.
When r > ry straight line » = const falls inside the light cone.
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If r < ry we have |cd7/dR| > 1 so the line r = const lies outside light cone, which means no
particles can be at rest in this region.

We see also that all world lines intersect the line r = 0. Thus r = r, is event horizon and lies
on light cone, hence event horizon is the null surface.

The motion of a particle in the gravitational field of a Schwarzschild black
hole

The Hamilton-Jacobi equation again:
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where four-momentum p; = —% and pg = E (energy), ps = L (angular momentum).

It is possible to show that

where Uggr is the “effective potential energy”:

r L2
Ueft(r) = m# (=) (1 * mzw>

Here L is the angular momentum and m is the mass of a particle.

Uggr can be used to find stable and unstable circular orbits.
For given radius Ugg is equal to the energy of a particle which has the turn point for this r, i.e.
dr/dt = 0, thus the condition ' > Ugg determines the admissible range of the motion.

All circular orbits are determined by simultaneous solution of the equations

Uy _

Ueff = F and o

0.



Kerr Black Holes

The Kerr metric describing the gravitational field of rotating bodies has the following form:

2 2
ds? = (1 — %)dﬁ _ %dﬁ — p?d0% — (r* +d® + % sin? @) sin? fd¢?
p p

2rqara
+=2— sin” Odgd,
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where p? = r24a%cos? 9, A = r? —Tgr—l—a2, and a = %, where J is the specific angular momentum.
For the Kerr metric ggg = 0 gives

TyT
— 2 =,
2
thus
r? — Tgr + a®cos’h =0,
A=r2—rgr+a2 =0,
and

1
o= 3l dateost0) = 2 [(2)2 — a2 ot

The location of horizon in the Kerr metric: g'' = 0 (g11 = 00) corresponds to

A:r2—7“g7"—i—a2:O7

1
r= 5(7’5, + /72 — 4a? cos? 0) = %g + \/(7;)2 —a?cos? 6.
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The region between the limit of stationarity and the event horizon is called the ”ergosphere”.
By the Penrose mechanism it is possible to extract rotational energy of Kerr black hole.
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Kerr black holes and the Equivalence Principle

According to the Equivalence Principle the observer is not able to distinguish between the gravi-
tational field and some non-inertial reference frame. In the case of the gravitational field described
by the Kerr metric the corresponding non-inertial reference frame is the rotating one.

Example. How to find its angular velocity?

For dr = 0 and df = /2
ds® = gooc®dt* + 2goscdtdd + gs3dd® =

2go3cdtd 2\? g2
g33 933 g33

2 2
- <goo — g°3> Adt? + g3 <d¢ + gO30dt> = Goo2dt? + gs3 (dop — Qdt)?
g33 gs3

where
Q= _90

933
The following transformation of coordinates

gOOt :tN; 933 :7;27 d)_Qt: QE

brings the metric to the form R
ds® = Adi* — #dg?,

which is locally galilean metric. Hence locally the observer can not discriminate between the Kerr
gravitational field and non-inertial frame of reference rotating with angular velocity 2.



