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LECTURE 6. PART I 

EXPERIMENTS IN GENERAL RELATIVITY  

 

General relativity is currently the most successful gravitational theory, being almost 
universally accepted and well-supported by observations. General relativity's first 
success was in explaining the anomalous perihelion precession of Mercury,  then 
observations of stars near the eclipsed Sun quantitatively confirmed general 
relativity's prediction that massive objects bend light.  Other observations and 
experiments have since confirmed many of the predictions of general relativity, 
including the gravitational redshift of light and gravitational time dilation.  

All these effects in the Solar System were then observed in tremendously magnified 
version in binary pulsars. All these issues will be considered in the Part 1.  
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1. Classical tests 
 

In 1916 Einstein proposed three famous tests of general relativity, subsequently 
called the classical tests of general relativity:  

1. the perihelion precession of Mercury's orbit 
2. the deflection of light by the Sun 
3. the gravitational redshift of light 

1.1 Perihelion precession of Mercury

In Newtonian physics, a lone object orbiting a spherical mass would trace out an 
ellipse with the spherical mass at a focus. The point of closest approach, called the 
perihelion in the solar system, is fixed. There are a number of solar system effects 
that cause the perihelion of a planet to precess, or rotate around the sun. These are 
mainly because of the presence of other planets, which perturb orbits. Another 
effect is solar oblateness, which produces only a minor contribution. The precession 
of the perihelion of Mercury was a longstanding problem in celestial mechanics. 
Careful observations of Mercury showed that the actual value of the precession 
disagreed with that calculated from Newton's theory by 43 seconds of arc per 
century, which was much larger than the experimental error at the time.  In general 
relativity, this orbit will precess, or change orientation within its plane, due to the 
curvature of spacetime. This change is described as a  precession of the perihelion:  

  

(very exaggerated) 
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1.2. Deflection of light by the Sun

The first observation of light deflection was performed by noting the change in 
position of stars as they passed near the Sun on the celestial sphere. The 
observations were performed by Sir Arthur Eddington. 

 

Eddington travelled to the island of Príncipe near Africa to watch the solar eclipse 
of May 29, 1919.  
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During the eclipse, he took pictures of the stars in the region around the Sun. 
According to the theory of general relativity, stars near the Sun would appear to 
have been slightly shifted because their light had been curved by its gravitational 
field.  

 
 
Eddington's 1919 measurements of the bending of star-light by the Sun's gravity led 
to the acceptance of general relativity worldwide. 

 

This effect is noticeable only during an eclipse, since otherwise the Sun's brightness 
obscures the stars.  Newtonian gravitation predicted half the shift of general 
relativity. 
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1.3. Gravitational redshift of light

Einstein predicted the gravitational redshift of light in 1907. The more often used 
exact equation for gravitational redshift applies to the case outside of a non-
rotating, uncharged mass which is spherically symmetric. The equation is: 

where   G is the gravitational constant, M is the mass of the 
object creating the gravitational field, r is the radial coordinate of the observer 
(which is analogous to the classical distance from the center of the object, but is 
actually a Schwarzschild coordinate), and  c is the speed of light.  

It was conclusively tested when the Pound-Rebka experiment in 1959 measured the 
relative redshift of two sources situated at the top and bottom of Harvard 
University's Jefferson tower.   

 

.  

Jefferson laboratory at Harvard University. The experiment occurred in the left "tower".  

 

The result was in excellent agreement with general relativity. This was one of the 
first precision experiments testing general relativity.  
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2. Binary Pulsar

General relativity has been extremely well tested after 1974,  when Hulse and Taylor 
discovered the first binary pulsar.  

Pulsars are highly magnetized rotating neutron stars.   

A neutron star is formed from the collapsed remnant  of a massive star  and consists mostly 
of neutrons. It is a very hot star supported by the Pauli exclusion principle repulsion 
between neutrons.  

 

A typical neutron star has a mass between 1.35 and about 2.1 solar masses, with a 
corresponding radius between 10 and 20 km — 30,000 to 70,000 times smaller than the Sun. 
Thus, neutron stars have overall densities of  1017 to  1018 kg/m³, which compares with the 
approximate density of an atomic nucleus.  

Pulsars emit a beam of detectable electromagnetic radiation in the form of radio waves. Their 
observed periods range from 1 ms to 10 s.  

 
Schematic view of a pulsar. The sphere in the middle represents the neutron star, the curves indicate the magnetic 
field lines and the protruding cones represent the emission beams. 

The radiation can only be observed when the beam of emission is pointing towards the Earth. This is 
called the lighthouse effect and gives rise to the pulsed nature that gives pulsars their name. Because 
neutron stars are very dense objects, the rotation period and thus the interval between observed 
pulses are very regular. For some pulsars, the regularity of pulsation is as precise as an atomic clock. 

http://en.wikipedia.org/wiki/Neutron_star
http://en.wikipedia.org/wiki/Neutron
http://en.wikipedia.org/wiki/Gravitational_collapse
http://en.wikipedia.org/wiki/Pauli_exclusion_principle
http://en.wikipedia.org/wiki/Mass
http://en.wikipedia.org/wiki/Orders_of_magnitude_%28mass%29#30
http://en.wikipedia.org/wiki/Solar_mass
http://en.wikipedia.org/wiki/Radius
http://en.wikipedia.org/wiki/Kilometre
http://en.wikipedia.org/wiki/Sun
http://en.wikipedia.org/wiki/Orders_of_magnitude_%28density%29#16
http://en.wikipedia.org/wiki/Orders_of_magnitude_%28density%29#16
http://en.wikipedia.org/wiki/Orders_of_magnitude_%28density%29#16
http://en.wikipedia.org/wiki/Orders_of_magnitude_%28density%29#16
http://en.wikipedia.org/wiki/Kilogram
http://en.wikipedia.org/wiki/Cubic_metre
http://en.wikipedia.org/wiki/Atomic_nucleus
http://en.wikipedia.org/wiki/Electromagnetic_radiation
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A binary pulsar is a pulsar with a binary companion, often another pulsar, white 
dwarf or neutron star.  

 
 

The binary pulsars allow astrophysicists to test general relativity in the case of a 
strong gravitational field. The timing of the pulses from the pulsar can be measured 
with extraordinary accuracy. A relatively simple 10-parameter model incorporating 
information about the pulsar timing, the Keplerian orbits and three post-Keplerian 
corrections (the rate of periastron advance, a factor for gravitational redshift and a 
rate of change of the orbital period due to  gravitational radiation) is sufficient to 
completely model the pulsar timing.  

 

Binary pulsar timing has thus indirectly confirmed the existence of gravitational 
radiation and verified Einstein's general theory of relativity in a previously 
unknown regime. 

The first binary pulsar, PSR 1913+16 or the "Hulse-Taylor binary pulsar" was 
discovered in 1974 at Arecibo by Joseph Hooton Taylor, Jr. and Russell Hulse, for 
which they won the 1993 Nobel Prize in Physics. Pulses from this system have been 
tracked, without glitches, to within 15 μs since its discovery. 
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Space-time in the vicinity of the pulsar is greatly warped 

 
This curvature causes the pulsar orbit to advance. 

 

 
 
 
The rotation of the pulsar's periastron is analogous to the advance of the perihelion 
of Mercury in its orbit. The observed advance for PSR 1913+16 is about 4.2 degrees 
per year; the pulsar's periastron advances in a single day by the same amount as 
Mercury's perihelion advances in a century. 
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Example 1.  Gravity Probe A 
 
 
There were a lot of other precision tests of general relativity, not discussed here. I 
will give you just two other important examples are the Gravity Probe A satellite, 
launched in 1976,  
 

 
 
 
 
which showed that gravity and velocity affect the ability to synchronize the rates of 
clocks orbiting a central mass. 
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Example 2.  Gravity Probe B 
 
General relativity predicts that rotating bodies drag spacetime around themselves in 
a phenomenon referred to as frame-dragging (or gravimagnetism):  the rotation of 
an object would alter space and time, dragging a nearby object out of position 
compared to the predictions of Newtonian physics. The predicted effect is incredibly 
small — about one part in a few trillion. In order to detect it, it is necessary to look 
at a very massive object, like rotating black holes (see the previous lecture) or build 
an instrument that is incredibly sensitive. 
 
The Gravity Probe B satellite, launched in 2004 
 

 
 
  
is currently attempting to detect frame dragging. The experiment planned to check, 
very precisely, tiny changes in the direction of spin of four gyroscopes contained in 
an Earth satellite orbiting at 650 km altitude and crossing directly over the poles. 
They were intended to measure how space and time are "warped" by the presence 
of the Earth, and, more profoundly, if and how much the Earth's rotation "drags" 
space-time around with it.  
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Lecture 6. Part II. Kepler problem in general relativity 
 

The Kepler problem in general relativity involves solving for the motion of two 
gravitationally interacting spherical bodies.. In this lecture we will consider the 
curved space-time described by the Schwarzschild metric (see the previous lecture), 
however the results could be generalized for the Kerr metric as well.  
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1. The Kepler problem in the Newtonian theory 

 

Let start with astrophysical systems when we can use the Newtonian theory of 
gravity, despite that one of the companions could be a black hole.  We will 
consider two examples. In the first example we have binary system with one 
invisible component, which could be a black hole. In another example an 
invisible object, which is suspected to be a black hole is surrounded by not only 
one but many visible stars. In both examples the distances between al objects in 
corresponding systems are considerably larger than the gravitational radius of 
the black hole and in the zero approximation the Newtonian theory works good 
enough. [ We don’t need to assume that some masses are small in comparison 
with the mass of invisible object .] 

Example 1.  A binary system with an invisible compact object 

Let  us  consider  a binary system in which one component is some well observed 
star, say, red giant, while another component is absolutely invisible object, which 
could be a white dwarf, neutron star or black hole. Let Mx is the mass of the 
invisible compact object, M is the mass of a visible star, T  is the period of the 
orbit, i is the angle between the normal to the plane of the orbit  and the line of 
sight to the observer and  v is the projection of the orbital velocity of the visible 
star on the line of sight. 

In observations of binaries one can measure directly only v (using Doppler shift 
of spectral lines) and T (using clocks). 

The objective is to determine Mx. 

Both the components move around the centre of mass of the binary system. Let 
assume for simplicity that both components move along circular orbits of radii 
rx and r correspondingly. 

Then, from the Newtonian theory we have 
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Since rx and  r can not to be determined directly, let us discriminate them from 
these equations to obtain  so called the mass function: 

 

 

Thus, from observations of newtonian binaries we can not determine Mx,  M 
and i separately. Observations of binaries give only the combination of these 
three quantities, the mass function. We will see below that due to the relativistic 
effects neglected in this example, one does can determine Mx,  M and i 
separately. 
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Example 2. Observable motion of star around Black Hole in the Milky 
Way 
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2. Hamilton–Jacobi equation 

 

As mentioned above, the Kepler problem in general relativity involves solving for 
the motion of two gravitationally interacting spherical bodies. One body (like a 
planet) is assumed to have a mass m that is negligible compared to the mass M of 
the other body (like the Sun). The role of the lighter object can be played by a planet 
around a star or a star around a massive black hole, or by photon by a neutron star 
or black hole. The heavier body contributes to the curvature of space-time.  We 
know that the motion of the lighter body (“the particle” or photon) is described by 
the space-time geodesics of the Schwarzschild metric. 

These geodesic solutions account for the anomalous precession of the planet 
Mercury, describe the deflection of light in a gravitational field and so on. 

 

The geodesic equations are very useful for physical understanding of motion of 
particles and propagation of photons in the gravitational field. However, it is easier 
to work with the Hamilton–Jacobi equation.  The advantage of this approach is that 
it equates the motion of the particle with the propagation of a wave.  

The derivation of Hamilton-Jacobi  equation is really very simple: 

 From the definition of the four-velocity 

 

 

we have 
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hence 

  

Four-momentum of the particle is defined as 

 

hence 

 

Taking into account that a covariant vector transforms as the gradient of a scalar, 
we can introduce such scalar function that 

 

Then we immediately obtain the Hamilton- Jacobi Equation for a particle in a 
gravitational field 
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The definition of 4-velocity is not applicable to the propagation of light since 

 

We can introduce some scalar parameter varying along world line of the light 
signal and introduce then a vector 

 

which is tangent to the word line. This vector is called four- dimensional wave 
vector. In absence of gravitational field according to the geometrical optics the 
propagation of light is given by equation 

 

We know that the generalization of this equation in General Relativity is 
straightforward: 

 

From 

 

we obtain 
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From the definition of the four-vector for light we have 

 

then taking into account that 

 

Substituting covariant vector 

 

we obtain the Eikonal Equation in gravitational field 

 

The physical meaning of   (called the Eikonal) follows from 

 

this  looks like the phase of electromagnetic wave. We can see that the General 
Relativity can easily solve the problem of propagation of electromagnetic signals in 
presence of gravitational field, while the Newtonian gravity can not even offer more 
or less self consistent approach to the problem. The sh ortest way to obtain the 
equation for propagation of light is just to put m=0 in the Hamilton–Jacobi 
equation and change notations.  
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3. The motion of a particle in the Schwarzschild metric

Taking into account spherical symmetry of the Schwarzschild metric we can choose
our spherical coordinates in a such way that the plane of orbit coincides with the
equatorial plane θ = π/2. Then the Hamilton-Jacobi equation in the Schwarzschild
metric can be written as

(
1− rg

r

)−1
(

∂S

c∂t

)2

−
(
1− rg

r

)(
∂S

∂r

)2

− 1

r2

(
∂S

∂φ

)2

−m2c2 = 0.

Since all coefficients in this equation do not depend on t and φ we can say that

∂S

∂t
= −E, and

∂S

∂φ
= L,

where E and L are constants, which by definition are the energy and angular momen-
tum of the particle under consideration. Then putting

S = −Et + Lφ + Sr(r)

into the Hamilton-Jacobi equation we have

(
1− rg

r

)−1 E2

c2
−
(
1− rg

r

)(
dSr(r)

dr

)2

− L2

r2
−m2c2 = 0,

hence
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(
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r

)−1/2
√(
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r

)−1 E2

c2
− L2

r2
−m2c2 =

=
(
1− rg

r

)−1
√√√√E2

c2
−
(
1− rg

r

)(
L2

r2
+ m2c2

)
.
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Then the contravariant components of the four-momentum are

p0 ≡ mc
dx0

ds
= mc

cdt

ds
= g00p0 =

(
1− rg

r

)−1 ∂S

c∂t
= −E

c

(
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r

)−1

,

p1 ≡ mc
dx1

ds
= mc

dr

ds
= g11p1 = −mc

(
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r

)
∂S
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=

= −mc
(
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r

)−1 E2
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−mc
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p3 ≡ mc
dx3

ds
= mc

dφ

ds
= g33p3 = − 1

r2

∂S

∂φ
= −L

r2
.

Then we can rewrite above equations as

dt

ds
= − E

mc3

(
1− rg

r

)−1

,

dr

ds
= −1

c

√
E2 − U2

eff ,

dφ

ds
= − L

mcr2
,

where

Ueff = mc2

√√√√(1 +
L2

m2c2r2

)(
1− rg

r

)
is called the ”effective potential energy”. For given radius Ueff is equal to the energy
of a particle which has the turn point ( dr

dφ = 0), i.e. Apastron or Periastron, for this r.
Indeed

dr

dφ
=

mc

Lr2

√
E2 − U2

eff ,

hence, if

dr

dφ
= 0, then Ueff = E.

Thus the condition

E > Ueff

determines the admissible range of the motion. The effective potential includes in
relativistic manner potential energy plus kinetic energy of non-radial motion, this
kinetic energy is determined by angular momentum L.
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Example. Stable and unstable circular orbits.

The radius of the stable circular orbit is obtained from the simultaneous solution of
the equations

Ueff = E and
dUeff

dr
= 0.

From

dUeff/dr = 0

we have

dU2
eff/du = 0,

where u = 1/r. Hence

−rg

(
1 +

L2u2

m2c2

)
+ (1− rgu)

2L2u

m2c2
= 0, or rgr

2 + 3rg

(
L

mc

)2

− 2
(

L

mc

)2

r = 0.

Solving this equation we have

r± =
L2

m2c2rg

±

√√√√( L2

m2c2rg

)2

− 3L2

m2c2
=

L2

m2c2rg

1±
√

1−
3r2

gm
2c2

L2

 .

The larger root corresponds to the stable orbit. One can see that

1−
3r2

gm
2c2

L2
> 0.

Hence

−
√

3mcrg ≤ L ≤
√

3mcrg.

Substituting

L =
√

3mcrg

into equation for the radius of circular orbits, we have for the radius of the last stable
orbit

rlso = 3rg

(see the figure below).
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Figure 1: Effective potential energy u = Ueff/mc2 for various angular momenta as a function of separation
r/rg of a test mass m in orbit about a Newtonian point mass M (left panel) and a Schwarzschild black
hole of mass M (right panel). The solid lines denote contours of constant orbital angular momentum L.
Extrema of these contours identify circular orbits, marked by the dashed lines. The circular orbits are
stable if the extremum is a minimum, otherwise they are unstable.Abrivation LSCO means the last stable
circular orbit
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Lecture 6.  Part III 

GRAVITATIONAL WAVES 

 

 
©Lionel BRET/EUROLIOS 
 
 
Numerous astronomical  observations, as we know from previous lectures,  give 
strong evidence of  the existence of black holes, the most interesting and mysterious 
prediction of general relativity.  Black holes are the most powerful sources of 
gravitational waves.  
 
A gravitational wave is a fluctuation in the curvature of spacetime which propagates 
as a wave, traveling outward from a moving object or system of objects.  
 
Gravitational radiation is the energy transported by these waves. Important 
examples of systems which emit gravitational waves are binary star systems, where 
the two stars in the binary are white dwarfs, neutron stars, or black holes. 
Although gravitational radiation has not yet been directly detected, it has been 
indirectly shown to exist. This was the basis for the 1993 Nobel Prize in Physics, 
awarded for measurements of the Hulse-Taylor binary system, considered in part I 
of this lecture. 
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1. Gravitational wave astronomy 

 
So far the bulk of information about the Universe comes in form of electromagnetic 
waves generated by electrically charged particles. Gravitational waves have a totally 
different nature in comparison with electromagnetic waves, being generated by the 
motion of massive gravitating objects. and variations of masses of celestial bodies.  
The observation of gravitational waves will therefore significantly complement the 
observation of electromagnetic waves (light, radio, micro-waves, X and gamma 
rays) and of astro-particles (cosmic rays, neutrinos). It will reveal aspects of the 
Universe not reachable by these means and will extend the observable domain even 
in the cosmic zones darkened by dust and masked by other phenomena. 
The most dramatic processes of the cosmos such as supernova explosions, 
catastrophic collisions, fusion of binary systems, rotation of pulsars, interaction of 
black-holes or the original big-bang generate gravitational waves.  
 
Gravitational wave detectors are likely to reveal unsuspected aspects of the 
Universe.  You see below the map with location of gravitational wave detectors 
which are in operation or in preparation at the present moment: 
 

 
 
Gravitational waves research in the world 
 
Gravitational  wave astronomy, which can be considered as a new window on the 
Universe,  has already started. 
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    2. Detection of gravitational waves 

Gravitational waves distort space-time and produce forces in such a way that the 
distance between free masses will alternately decrease and increase during the 
passage of a gravitational wave. An important characteristic is that when there is 
elongation in one direction there is compression in the perpendicular one. As a 
result, a circle made of free masses will get successively elongated and contracted in 
two perpendicular directions.  
 

 
 
Gravitational waves are polarized: 
 

 
 
The amplitude of gravitational waves, the dimensionless parameter “h”, is measured 
by the relative variation of distance between two free masses. The absolute variation 
is therefore proportional to the distance between the two masses. It would typically 
be one hundred millions times smaller than an atom, however such a small variation 
of distance can be detected through the phenomenon of interference.  
A laser interferometer is very sensitive to differential length variations between its 
two arms and is ideally suited to the detection of gravitational waves. Because of the 
extremely high sensitivity required, the length of the arms must be hundreds of 
kilometers. Since this cannot be practically achieved on earth, one uses multiple 
reflections between two mirrors to artificially increase the measuring length. Fabry-
Perot resonant cavities made of two mirrors are currently employed in gravitational 
waves interferometers. 
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Example 1. L(aser)I(nterferometric)G(ravitational)O(bservatory) 
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Example 2. L(aser)I(nterferometric)S(pace)A(ntenna) 

 

 

Sensitivity for LISA  
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3. Binary pulsar again 
 

Binary pulsars are one of the few tools scientists have to detect evidence of 
gravitational waves; Einstein’s theory of general relativity predicts that two neutron 
stars would emit gravitational waves as they orbit a common center of mass, which 
would carry away orbital energy and cause the two stars to draw closer together. 
Data collected by Taylor and his colleagues of the orbital period of PRS 1913+16 
supported this relativistic prediction; they reported in 1983 that there was a 
difference in the observed minimum separation of the two pulsars and that expected 
if the orbital separation had remained constant. In the decade following its 
discovery the system’s orbital period had decreased by about 76 millionths of a 
second per year-this means that the pulsar was approaching its maximum 
separation more than a second earlier than it would have if the orbit had remained 
the same. Subsequent observations continue to show this decrease. 

 

The pulsar's orbit is shrinking with time as shown in this diagram; currently, the 
orbit shrinks by about 3.1 mm per orbit. The two stars should merge in about 300 
million years from now.  
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4. Propagation of gravitational waves.

A weak gravitational field is a small perturbation of the galilean metric:

gik = ηik + hik.

It is easy to show that

gik = ηik − ηinηkmhnk.

The gravitational wave is transverse and traceless part of these perturbations and as
we know the plane wave has two independent states of linear polarization.
Using a linear coordinate transformation

x
′i = xi + ξi,

where ξi are small functions of xi. We can impose on hik the following four supple-
mentary conditions:

ηkmhmi,k −
1

2
δk
i η

nmhnm,k = 0.

After such transformation the Ricci tensor is reduced to

Rik = −1

2
ηlm ∂2hik

∂xl∂xm
.

According to the Einstein equations in empty space-time

Rik = 0,

hence gravitational waves satisfy the wave equation

(∇2 − 1

c2

∂2

∂t2
)hik = 0,

where ∇2 is the 3-dimensional Laplacian operator.
Consider a ring of test particles initially at rest in the (y − z) plane, perturbed by
a plane monochromatic gravitational wave propagating in x-direction with frequency
ω and amplitude h0. Then it is possible to show that all components of hik can be
eliminated by transformation of coordinates except

h22 = −h33 ≡ h+, andh23 = h32 ≡ h×,

corresponding to “+” and “×” polarizations. By calculating the physical distances
between the test particles on the ring and its center we can determine distortions
in shape and in orientation of the ring produced by a gravitational wave at different
moments of time and for different polarizations of the gravitational wave:

h+ = h0 sin ω(t− x/c), h× = 0 and h+ = 0, h× = h0 sin ω(t− x/c).
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5. Generation of gravitational waves.

Starting from the Einstein equations we can linearize them taking into account that
gravitational waves are characterized by small amplitudes. Then in approximation of
slow motions and small separations we can use the quadrupole formula for gravita-
tional waves:

hαβ = − 2G

3c4R

d2Dαβ

dt2
,

where

Dαβ =
∫

(3xαxβ − r2δαβ)dM is the quadrupole tensor.

Example

A white dwarf of mass m moves around a black hole of mass M � m on a circular orbit
with radius r.
Find the frequency of gravitational radiation if T is the orbital period.
Taking into account that

xα = eα cos ω0t,

where eα is some constant vector, we have

hαβ ∼ D̈αβ ∼ (3xαxβ − r2δαβ)
·· ∼ (xαxβ)

··

∼ eαeβ(cos2 ω0t)
·· ∼ 1

2
eαeβ(1 + cos 2ω0t)

·· ∼ cos ω,

where

ω = 2ω0 = 4π/T.

Estimate to an order of magnitude h0, the amplitude of the gravitational wave.
To an order of magnitude and omitting indices we have

h ∼ 2G

3c4R
D̈ ∼ 2G

3c4R

3
2
(2ω0)2mr2 ∼ 4Gmr2ω2

0

c4R
∼

∼ 4Gmr2

c4R

GM

r3
∼ m

M

r2
g

rR
∼ m

M

rg

r

rg

R
.


	ra_notes6_pI_07.pdf
	                                                                                        [page 1] 
	AG Polnarev, Relativistic Astrophysics, 2007. Lecture 6 ,  Part  I. Experiments in General Relativity 
	 
	LECTURE 6. PART I 
	EXPERIMENTS IN GENERAL RELATIVITY  
	 
	General relativity is currently the most successful gravitational theory, being almost universally accepted and well-supported by observations. General relativity's first success was in explaining the anomalous perihelion precession of Mercury,  then observations of stars near the eclipsed Sun quantitatively confirmed general relativity's prediction that massive objects bend light.  Other observations and experiments have since confirmed many of the predictions of general relativity, including the gravitational redshift of light and gravitational time dilation.  
	All these effects in the Solar System were then observed in tremendously magnified version in binary pulsars. All these issues will be considered in the Part 1.  
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	1. Classical tests 
	 
	1.1 Perihelion precession of Mercury 
	In Newtonian physics, a lone object orbiting a spherical mass would trace out an ellipse with the spherical mass at a focus. The point of closest approach, called the perihelion in the solar system, is fixed. There are a number of solar system effects that cause the perihelion of a planet to precess, or rotate around the sun. These are mainly because of the presence of other planets, which perturb orbits. Another effect is solar oblateness, which produces only a minor contribution. The precession of the perihelion of Mercury was a longstanding problem in celestial mechanics. Careful observations of Mercury showed that the actual value of the precession disagreed with that calculated from Newton's theory by 43 seconds of arc per century, which was much larger than the experimental error at the time.  In general relativity, this orbit will precess, or change orientation within its plane, due to the curvature of spacetime. This change is described as a  precession of the perihelion:  
	   
	(very exaggerated) 
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	1.2. Deflection of light by the Sun 
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	1.3. Gravitational redshift of light 

	          [Page 6]  
	AG Polnarev, Relativistic Astrophysics, 2007. Lecture 6 , Part I.  Experiments in General Relativity  2. Binary Pulsar   
	2. Binary Pulsar 
	General relativity has been extremely well tested after 1974,  when Hulse and Taylor discovered the first binary pulsar.  
	Pulsars are highly magnetized rotating neutron stars.   
	A neutron star is formed from the collapsed remnant  of a massive star  and consists mostly of neutrons. It is a very hot star supported by the Pauli exclusion principle repulsion between neutrons.  
	  
	A typical neutron star has a mass between 1.35 and about 2.1 solar masses, with a corresponding radius between 10 and 20 km — 30,000 to 70,000 times smaller than the Sun. Thus, neutron stars have overall densities of  1017 to  1018 kg/m³, which compares with the approximate density of an atomic nucleus.  
	Pulsars emit a beam of detectable electromagnetic radiation in the form of radio waves. Their observed periods range from 1 ms to 10 s.  
	  
	Schematic view of a pulsar. The sphere in the middle represents the neutron star, the curves indicate the magnetic field lines and the protruding cones represent the emission beams. 
	The radiation can only be observed when the beam of emission is pointing towards the Earth. This is called the lighthouse effect and gives rise to the pulsed nature that gives pulsars their name. Because neutron stars are very dense objects, the rotation period and thus the interval between observed pulses are very regular. For some pulsars, the regularity of pulsation is as precise as an atomic clock. 
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	Space-time in the vicinity of the pulsar is greatly warped 
	  
	This curvature causes the pulsar orbit to advance. 
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	Since rx and  r can not to be determined directly, let us discriminate them from these equations to obtain  so called the mass function: 
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