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These lecture notes give an introduction to the formalism used in Special and General
Relativity, at an undergraduate level.
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1 Tensor calculus in Special Relativity

1.1 Motivations

An inertial frame is a frame where an observer at rest does not feel any force and where a
free motion leads to a constant velocity (direction and intensity). If one wishes to go from
an inertial frame to another, i.e. to describe the physics with another point of view, the
changes of coordinates in Newtonian mechanics are given by the Galilée transformations:

t′ = t
~r′ = ~r + ~vt, (1)

where ~v is the velocity of one frame with respect to the other. The transformations (1)
imply that the acceleration ~a of a point particle is invariant in this change of frame and
thus a force ~f felt by the particle is also invariant if you impose the fundamental law of
newtonian mechanics ~f = m~a to be valid in any inertial frame.

Since the time is an invariant quantity in Galilée transformations, the composition of
velocities is obviously given by

d~r′

dt′
=

d~r

dt
+ ~v. (2)

It happens that the transformation (2) is not respected by the experiments (historically:
Michelson’s experiment on diffraction patterns which implies that the speed of light is
independent of the inertial frame considered). The issue Einstein found was ”simply” to
abandon the transformations (1) and to assume that t′ 6= t.

The independence of the speed of light (that we note c) with respect to the inertial
frame leads us to the new postulate: the free motion of a point particle over the distance
|~r| during the time t is such that the quantity −c2t2 + |~r|2 is independent of the inertial
observer.

Therefore if the free particle moves over the distance |~r| measured in a frame O (and
|~r′| measured in a frame O′) during the time t measured in O (and t′ measured in O′), we
will have

−c2t2 + |~r|2 = −c2t′2 + |~r′|2. (3)

Eq.(3) must be considered as the starting point from which everything follows. It has the
status of a postulate.

1.2 Proper-time

Before going to the Lorentz transformations, let us define the proper time τ as the time
measured in a frame by a clock at rest. In another frame, this clock is labelled by (t, ~r)
and from Eq.(3) for an infinitesimal motion, we can write

2



dτ 2 = dt2 −
1

c2
d~r2, (4)

such that

dt

dτ
=

1
√

1 − 1
c2

(

d~r
dt

)2

Since the proper-time is measured in the rest frame, d~r
dt

= ~v is the relative velocity between

the two frames. We denote then γ = 1/
√

1 − v2/c2 and have

dt

dτ
= γ. (5)

We will see in the next section the new law of velocities composition from which we can
justify that we always have v ≤ c, such that γ is always defined.

For a general motion and not only uniform, we can consider the tangent inertial frame
at any moment and Eq.(5) will be valid all along the trajectory, with γ depending on the
time t. Thus the proper time measured on a finite motion between the times t1 and t2 will
be

∆τ =
∫ t2

t1

dt

γ(t)
< ∆t,

such that the proper-time is always smaller than the time measured in any other frame.

1.3 Lorentz transformations

We will now look for the new transformations of coordinates, in a change of inertial frame,
which are consistent with the assumption (3). For this, we will consider a motion along the
x-axis, leaving the coordinates y and z unchanged and we will not suppose that the time is
an invariant quantity. Furthermore, we will look for linear transformations since we impose
them to be valid uniformly in space and time. We will thus look for transformations of the
form

t′ = Dx + Et

x′ = Ax + Bt

y′ = y

z′ = z. (6)

Plugging the transformations (6) in the assumption (3), we obtain
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c2D2 − A2 = −1

c2E2 − B2 = c2

c2ED − AB = 0

Then if we consider the origin of the spatial coordinates of O, we obtain x′ = Bt and
t′ = Et, such that

B

E
=

x′

t′
= v,

by definition of v. We now have the 4 equations to determine A, B, D, E and find easily
the Lorentz transformation

ct′ = γ
(

ct +
v

c
x
)

x′ = γ (x + vt) , (7)

where γ = 1/
√

1 − v2/c2.

As a first consequence, let us come back to the composition of velocities. From Eqs.(7),
we obtain

dx′

dt′
=

dx + vdt

dt + v
c2

dx
=

dx
dt

+ v

1 + v
c2

dx
dt

.

If we suppose that dx
dt

<< c, we are led to dx′

dt′
' dx

dt
+ v, which is the non-relativistic limit.

Then we see that if dx
dt

= c, we also have dx′

dt′
= c, which was expected from the invariance

of the speed of light and which indicates that the latter is the maximum speed that one
can obtain.

This leads us to the following classification. Two events (t1, ~r1) and (t2, ~r2) related in
a way such that c2(t2 − t2)

2 > (~r2 − ~r1)
2 are said to be separated by a time-like interval

(they can interact via an information that has a speed smaller than c). If they are such
that c2(t2 − t2)

2 < (~r2 − ~r1)
2, they are said to be separated by a space-like interval (they

cannot interact). Finally, if they are such that c2(t2 − t2)
2 = (~r2 −~r1)

2, they are said to be
separated by a light-like interval (they can interact only via a ray of light).

Another consequence of the lorentz transformations is the so-called ’length contraction’:
if you measure an infinitesimal length dx′ in a rest frame with the corresponding length dx
measured in another frame at one given time t, you obtain from (7)

dx′

dx
= γ,
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such that the length measured in the rest frame (the proper-length) is always larger than
the one measured in any other inertial frame. This implies a ’contraction’ of an object
when it is measured by a moving observer.

Finally, a general Lorentz transformation includes also the coordinates y and z, but
always in a way such that the proper-time dτ remains an invariant quantity. We note that
the invariance of dτ is also satisfied by rotations in space, leaving the time unchanged, and
not only in a change of inertial frame.

1.4 4-vectors

We now come to the main purpose of this lesson. We wish to take into account these new
effects in a formalism showing naturally the conservation of the infinitesimal proper-time
(4).

In Galilée transformations, the time is an invariant quantity and we consider the trans-
formations of vectors in space. In Lorentz transformations, the time depends on the inertial
observer and thus should be part of a new vector in space-time, having 4 coordinates. We
will write such a 4-component vector x = (ct, ~r) such that its components are x0 = ct and
xk = rk where k = 1, 2, 3. Its general components will be noted xµ where µ = 0, 1, 2, 3.
The greek letters will denote space-time indices and the latin letters the space indices.

A 4-vector is defined as a set of 4 quantities which transform under a Lorentz transfor-
mation in a change of inertial frame.

By definition, x = (ct, ~r) is a 4-vector, called the 4-position (we will note with an arrow
the vectors in the 3-dimensional space). Then we can use the proper-time which is an
invariant quantity and define the 4-velocity u with components

uµ =
dxµ

dτ
=

dxµ

dt

dt

dτ
= γ

dxµ

dt
,

such that u0 = γc and ~u = γ~v, where ~v is the velocity in the 3-dimensional space. u is a
4-vector since it is constructed from another 4-vector and an invariant quantity. It must be
stressed here that the quantities dxµ/dt do not form a 4-vector: a Lorentz transformation
on these quantities does not lead to the equivalent quantities dx′µ/dt′ in the new frame.

Another example of 4-vector is the 4-momentum p = mu, where m is the mass of a
particle (a constant under Lorentz transformations). Its components are p0 = γmc and
~p = γm~v, which is thus the relativistic momentum (in the 3-dimensional space). A Taylor
expansion of γ for v/c << 1 gives

p0 =
1

c

(

mc2 +
1

2
mv2 + ...

)

,

where we recognize the kinetic energy mv2/2 and the mass energy mc2 defined as the
energy of the particle in the rest frame. We will thus call the energy of the particle the
quantity E = γmc2 and the 4-momentum can be written
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p =
(

E

c
, γm~v

)

Other examples of 4-vectors will be seen after the definition of their scalar product.

1.5 Scalar product in Minkowsky space-time

The idea is to define a scalar product which is left invariant in a change of inertial frame,
just as the usual scalar product is left invariant under a rotation in space.

Let x and y be two 4-vectors. We note x = xµeµ and y = yνeν , where the 4-vectors eµ

form a basis of the 4-dimensional space-time and the summation over repeated indices is
understood. We want the scalar product x.y of x and y to satisfy

x.y = y.x

x.(y + z) = x.y + x.z

(ax).y = x.(ay) = a(x.y)

where a is any real number. With these properties we have then x.y = xµyνeµ.eν = xµyνηµν

where

ηµν = ηνµ = eµ.eν .

By definition of the scalar product, we want it to be invariant in a change of frame, such
that we have to take

ηµν =











−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1











,

and −x0y0+xkyk is left invariant. ηµν is called the metric tensor. We will see the definition
of tensors in the next section and see that ηµν is indeed a tensor. For the moment, we can
consider it as an array 4 × 4. Note that we could have taken the opposite signs for the
components ηµν . This would not have changed the Physics, of course, and is just a matter
of convention.

We define then the new quantities

xµ = xνηµν ,
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which are called the covariant components of x, whereas those with the indice up are called
the contravariant components. We have then for any 4-vector x: x0 = −x0 and xk = xk

(k = 1, 2, 3). With this definition, we can write the scalar product in a compact way

x.y = xµyνηµν

= −x0y0 + x1y1 + x2y2 + x3y3

= x0y0 + x1y1 + x2y2 + x3y3

= xµyµ = xµyµ

We note that in a scalar product we always sum a covariant indice with a contravariant
one, and not two of the same kind.

We also define ηµν as being the components of the inverse matrix of ηµν, such that

ηµρηρν = δµ
ν ,

where δµ
ν is the Kronecker symbol (1 if µ = ν and 0 otherwise). We have obviously

xµ = ηµνxν and

ηµν =











−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1











.

Finally, we note that x2 = 0 does not imply x = 0, and we can have x2 < 0. The space-time
with this scalar product is called the Minkowsky space-time.

Let us check explicitely that this scalar product is invariant under the transformations
(7). We have for two 4-vectors p = (p0, ~p) and q = (q0, ~q)

p′µq′µ = −p′0q′0 + p′1q′1 + p′2q′2 + p′3q′3

= −γ2
(

p0 +
v

c
p1
)(

q0 +
v

c
q1
)

+ γ2
(

p1 +
v

c
p0
)(

q1 +
v

c
q0
)

+ p2q2 + p3q3

= −p0q0 + p1q1 + p2q2 + p3q3

= pµqµ

and find the expected result. In general, we define a Lorentz scalar as a quantity invariant
under a change of inertial frame.

To give another illustration of this invariance, let us compute the square of the 4-
momentum:

p2 = pµpµ = −(γmc)2 + (γm~v)2 = −m2c2,
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which is indeed an invariant quantity. This last relation can also be written

E2 = c2|~p|2 + m2c4.

Let us now see an example taken from classical electrodynamics. Maxwell’s equations
are of course relativistic since they describe the propagation of light and are at the origin of
the theory of relativity! Thus the scalar quantities appearing in the solutions of Maxwell’s
equations must be Lorentz scalars. We have for example the phase of a monochromatic
plane wave which can be written

θ = −ωt + ~k~r = kµxµ,

where kµ = (ω/c,~k). Since xµ is a 4-vector and its scalar product with kµ gives a Lorentz
scalar, we conclude that kµ is a 4-vector. We can derive from this example the relativistic
Doppler effect. Suppose that a source of light of proper frequency ω0 (i.e. in a frame where
the source is at rest) and proper-time τ moves with a constant velocity ~v with respect to
an inertial observer who measures the frequency ω, the time t and the position ~r of the
source. If ~n is the unit vector pointing from the observer towards the source at the time of
emission, we know from the invariance of the phase θ that during an infinitesimal motion

ω0dτ = ωdt − ~k.d~r = ωdt +
ω

c
~n.d~r,

such that,

ω0 = ω

(

dt

dτ
+

~n.d~r

cdt

dt

dτ

)

= γω

(

1 +
~n.~v

c

)

We note that, unlike the non-relativistic case, we have a Doppler effect when ~n.~v = 0.
Let us now consider the situation of the derivatives with respect to space-time indices.

We have

∂(x2)

∂xµ
=

∂

∂xµ
(xρxσηρσ)

= ηρσ(δρ
µxσ + δσ

µxρ)

= ησµxσ + ηµρx
ρ

= 2xµ

such that the derivative with respect to a contravariant component is a covariant compo-
nent. We can see in the same way that the derivative with respect to a covariant component
is a contravariant component. Thus we note
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∂

∂xµ
= ∂µ and

∂

∂xµ

= ∂µ, (8)

and the derivatives (8) are 4-vectors. If we come back to classical electrodynamics, the
conservation of the electric charge can be written

0 =
∂ρ

∂t
+ ~∇.~ =

∂(cρ)

∂x0
+

∂jk

∂xk
= ∂µjµ (9)

where jµ = (cρ,~) is a 4-vector (the 4-current) since its scalar product with ∂µ gives zero
in any inertial frame (the ’continuity equation’ (9) is of course Lorentz invariant since it is
derived from Maxwell’s equations).

1.6 Tensors in Minkowsky space-time

Now that we have defined 4-vectors, we are naturally led to a generalization of this classifi-
cation of physical quantities with respect to their transformation under a change of inertial
frame, what will be done with tensors. Let us first define for this the tensorial product
M = M ⊗ M , where M is the Minkowsky space-time. As M , M is a vector space. Its
dimension is 4 × 4 and its elements have the following properties

x ⊗ (y + z) = x ⊗ y + x ⊗ z

(ax) ⊗ y = x ⊗ (ay) = a(x ⊗ y),

where x, y and z are 4-vectors and a is a scalar. With these properties, we can write in
terms of components

x ⊗ y = xµyνeµ ⊗ eν (10)

where eµ ⊗ eν are 4× 4 basis tensors of M. The 16 components of x⊗ y are thus given by
xµyν. A general tensor of rank two is a linear combination of terms like (10) and can be
written

T(2) = T µνeµ ⊗ eν, (11)

where T µν are its contravariant components. By making r tensorial products, one can
define a tensor of rank r which has the general form

T(r) = T µ1...µreµ1
⊗ ... ⊗ eµr

.

We define the covariant components of a tensor as we did with the 4-vectors:

T ν
µ = T ρνηµρ and Tµν = T ρσηµρηνσ,

9



and similarily for higher order tensors. Finally we note that a 4-vector is a tensor of rank
1.

Let us now come to a fundamental property of tensors. This property deals with the
transformation law of a tensor under a change of inertial frame and can actually be seen
as a definition of tensors in Minkowsky space-time. In a general Lorentz transformation,
the components of a 4-vector transform like

xµ −→ x′µ = Λµ
νx

ν .

The specific example that was derived in section 3 is a particular case which took into
account the transformations of x0 and x1 only. In this situation, the matrix Λµ

ν was

Λµ
ν =











γ v
c
γ 0 0

v
c
γ γ 0 0

0 0 1 0
0 0 0 1











,

but we consider now a general Lorentz transformation, affecting all the 4 components xµ.
The coefficients Λµ

ν being constant, we have ∂x′µ/∂xν = Λµ
ν and thus

x′µ =
∂x′µ

∂xν
xν. (12)

A general 4-vector can then be written in the two different frames

x = xνeν and x = x′µe′µ =
∂x′µ

∂xν
xνe′µ,

such that the transformation of the basis 4-vectors is given by

eν =
∂x′µ

∂xν
e′µ.

Then we conclude from the definition (11) that the contravariant components of a tensor
of rank 2 transform as

T µν −→ T ′µν = T ρσ ∂x′µ

∂xρ

∂x′ν

∂xσ
. (13)

Finally, the contravariant components of a tensor of rank r obviously transform as

T µ1...µr −→ T ′µ1...µr = T ρ1...ρr
∂x′µ1

∂xρ1

...
∂x′µr

∂xρr
,
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and we recover the fact that a tensor of rank 1 (4-vector) transforms as Eq.(12).
We can check here that the metric tensor ηµν satisfies the transformation law (13): if

x is a 4-vector, its square does not depend on the inertial frame and thus

x′2 = x′µx′νηµν = xρxσ ∂x′µ

∂xρ

∂x′ν

∂xσ
ηµν .

But we know that

x′2 = x2 = xρxσηρσ,

such that we must have

ηµν

∂x′µ

∂xρ

∂x′ν

∂xσ
= ηρσ = η′

ρσ,

since the metric tensor is the same in all the inertial frames, what gives us the expected
result. We note that ηµ

ν = δµ
ν .

We can also check that the 4-vector ∂µ satisfies the expected transformation law (12).
The chain rule tells us that

∂′µ =
∂

∂x′
µ

=
∂xρ

∂x′
µ

∂

∂xρ

=
∂xρ

∂x′
µ

∂ρ

To see that this is consistent with the expected law of transformation of a 4-vector, we can
take a derivative of the identity x′2 = x2 with respect to x′

µ to see that

x′µ =
∂xρ

∂x′
µ

xρ,

so as, together with Eq.(12), we find

∂xρ

∂x′
µ

=
∂x′µ

∂xρ

and obtain that ∂µ transforms as expected:

∂′µ =
∂x′µ

∂xρ
∂ρ.

We defined the scalar product for 4-vectors and we can now extend this notion to
tensors. We call contraction of two indices the following operation. Let T(2) and K(2) be
two tensors of rank 2. Starting from their contravariant components, we can construct
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Rµν = T µρKσνηρσ = T µρK ν
ρ = T µ

ρK
ρν,

which are the contravariant components of the new tensor R of rank 2. The contraction is
Lorentz invariant. This operation can be extended to any tensor of any rank and can also
be be done within the set of indices of a given tensor: for example, starting from a tensor
T(4) of rank 4, we can construct

P µν = T µνρσηρσ = T µνρ
ρ = T µν ρ

ρ ,

which are the components of a tensor P(2) of rank 2. The trace of a tensor of rank 2 is
defined as

tr T(2) = T µνηµν = T µ
µ = T µ

µ ,

and is a Lorentz scalar. For example, the trace of the metric tensor is

tr η = ηµνηµν = δµ
µ = 4.

1.7 Maxwell’s equations in tensor notations

We come back to the origin of special relativity and claim that Maxwell’s equation should
be written in a compact way using tensors, since they are invariant under a change of
inertial frame. In what follows, we will take the constants µ0 = ε0 = c = 1.

Let us look at the electric field

~E = −
∂ ~A

∂t
− ~∇V,

whose components can be written

Ek = −
∂Ak

∂x0
−

∂V

∂xk

= −∂0A
k − ∂kV

= ∂0Ak − ∂kA0.

where we defined A0 = V . The magnetic field

~B = ~∇× ~A
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has the components

Bk = εkij∂iAj

= ∂iAj − ∂jAi, (14)

where εkij is the totally antisymmetric tensor (ε123 = 1 and ε132 = −1 as well as the circular
permutations, and the other components vanish).

Thus we are led to define the quantities

F µν = ∂µAν − ∂νAµ,

and have Ek = F 0k and Bk = F ij (where i, j and k are such that εkij = 1).

Let us now consider the Maxwell-Gauss equation ~∇. ~E = 4πρ. The latter can be written

∂Ek

∂xk
= ∂kF

0k = 4πj0, (15)

where we have defined the 4-vector jµ in section 5. Since F 00 = 0, Eq.(15) also reads

∂νF
0ν = 4πj0. (16)

The Maxwell-Ampère equation ~∇× ~B = 4π~j + ∂ ~E/∂t can be written

εkij∂iBj = εkijεjpq∂i∂
pAq = 4πjk + ∂0E

k. (17)

It is easy to see that εkijεjpq = δk
pδi

q − δk
q δ

i
p, such that Eq.(17) can be written

∂i

(

∂kAi − ∂iAk
)

= ∂iF
ki = 4πjk + ∂0F

0k,

or

∂νF
kν = 4πjk. (18)

Finally, Eqs.(16) and (18) can be put together to read

∂νF
µν = 4πjµ.

which is the final form of these two Maxwell’s equations. The other two equations are a
consequence of the definition of F µν. We now see that F µν must be the components of
a tensor, since its contraction with ∂ν gives the 4-vector jµ. We call it the field strength
tensor. We also find that Aµ are the components of a 4-vector (the 4-potential), since F µν

is composed out of ∂µ and Aν.
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1.8 Exercises

Exercise 1 Let pµ be the components of a 4-vector and define the tensors L and T with
components

Lµν =
pµpν

p2
and T µν = ηµν − Lµν .

Compute the components (Tp)µ and (Lp)µ of the 4-vectors Tp and Lp and the components
(T 2)µν , (L2)µν and (TL)µν of the tensors T 2, L2 and TL. Conclude on the nature of T and
L. Show that the inverse of T + αL is T + α−1L, where α is any non-zero real number.

Exercise 2 Let Aµ(x) be the components of the 4-potential depending on the 4-position xµ

and define the field strength tensor F (x) with components F µν(x) = ∂µAν(x) − ∂νAµ(x).
Show with a Fourier transform that (the integrals are taken over the space-time)

∫

d4xF µν(x)Fµν(x) = 2
∫

d4p

(2π)4
p2T µν(p)Aµ(p)Aν(−p),

where p2T µν(p) = p2ηµν − pµpν and the Fourier transform of a function φ is

φ(x) =
∫

d4p

(2π)4
φ(p)eipµxµ,

such that the Dirac distribution in momentum space is defined by

(2π)4δ(4)(p) = (2π)4δ(p0)δ(p1)δ(p2)δ(p3) =
∫

d4xeipµxµ.

Exercise 3 Let f be any function such that the integral

Iµν =
∫

d4x xµxνf(x2)

is defined (the domain of integration is the whole space-time). Show that

Iµν =
1

4
ηµν

∫

d4x x2f(x2).
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2 Tensor calculus in General Relativity

2.1 General setting

For reasons explained in the lesson on General Relativity, we need to describe gravitation
in a curved space-time. In Special Relativity, we imposed the transformation laws to
go from an inertial frame to another to be uniform in space and time, leading to linear
transformations of coordinates and thus of tensors. In a curved space-time, the tensors
(which are still defined as elements of a vector space) will be defined at a given point in
the tangent space-time, which is indeed a vector space.

Let us put this in a more quantitative way. We define first a manifold S of dimension
n as a topological space which can be decomposed as a union of open sets that can each
be mapped onto an open set of the vector space Rn, in a differentiable way. Therefore a
manifold is a ’smoothly curved surface’ that locally looks like a ’flat surface’.

A sphere is an example of manifold of dimension 2, but a cube is not: any open set
including an edge or a corner cannot be mapped onto an open set of R2 in a differentiable
way.

Suppose now that the space-time is a manifold S of dimension 4, labeled by the coor-
dinates xµ. Let M be a point of S and consider the tangent vector space S of S at the
point M , spanned by the 4-vectors

eµ =
∂M

∂xµ
.

The Strong Equivalence Principle ensures that this flat tangent space-time exists. Once we
have S, we can define the 4-vectors p and q and their scalar product p.q with the properties
that we had in Special Relativity and:

p.q = pµqνeµ.eν = pµqνgµν = pµqνgνµ,

where gνµ are the components of the metric tensor, depending on the coordinates of M .
We impose this scalar product to be independent of the parametrization of space-time,
i.e. of the frame where it is computed. It was already the case in Special Relativity for
uniform (linear) transformations and is now valid for any differentiable transformation of
coordinates.

We define the covariant components as xµ = xνgµν and we define also gµν as the
components of the inverse metric tensor, such that

gµρgρν = δµ
ν .

We stress again that unlike the situation of Special Relativity, the metric tensor depends
here on the coordinates of the point M that we consider in the curved space-time.
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Let us look now at the transformation of a tensor under a change of frame. If we take
other coordinates on the curved space-time, we can define another basis of 4-vectors in the
tangent space as

e′µ =
∂M

∂x′µ
=

∂M

∂xρ

∂xρ

∂x′µ
=

∂xρ

∂x′µ
eρ, (19)

such that, with similar arguments that were made in Special Relativity, the contravariant
components of a tensor of rank r transform as

T ′µ1...µr = T ρ1...ρr
∂x′µ1

∂xρ1

...
∂x′µr

∂xρr
, (20)

with the coefficients ∂x′µi/∂xρi being functions of coordinates, and not constants as they
were in flat space-time.

2.2 Curvilinear coordinates

Before going to a more specific study of curved space-times, let us derive some important
properties of curvilinear coordinates, valid in curved or flat spaces.

Lengths

Once we have defined the scalar product, the infinitesimal distance ds which separates
two points x and x + dx is by definition given by

ds2 = dxµdxµ = gµνdxµdxν,

such that the length l of a curve parametrized by xµ(s) between s1 and s2 is

l =
∫ s2

s1

ds

√

gµν(x(s))
dxµ(s)

ds

dxν(s)

ds

This length is of course independent of the choice of coordinates.

Volumes

Let us first consider a vector space of dimension n and a set of n independent vec-
tors (~e1, ..., ~en) which form a parallelepipedic area P and form also a basis of the vector
space, with coordinates (x1, ..., xn). If (~ı1, ...,~ın) is an orthonormal basis with coordinates
(ξ1, ..., ξn), the volume of P is

V =
∫

P
dξ1...dξn.

We now make a change of variables from (ξ1, ..., ξn) to (x1, ..., xn) and obtain
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V =
∫ 1

0

∣

∣

∣

∣

∣

det

(

∂ξk

∂xl

)∣

∣

∣

∣

∣

dx1...dxn,

where the determinant contains the coordinates ek
l = ~el.~ık which are constants and therefore

V =

∣

∣

∣

∣

∣

det

(

∂ξk

∂xl

)∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

e1
1 ... en

1

e1
2 ... en

2

... ... ...
e1

n ... en
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

It is more interesting to give for V a component-independent expression:

V 2 = |detA|2 = |detA||detA†| = |detAA†| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

~e1.~e1 ... ~e1.~en

~e2.~e1 ... ~e2.~en

... ... ...
~en.~e1 ... ~en.~en

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (21)

We now come to curvilinear coordinates where an infinitesimal volume dV can be
considered as a parallelepipedic area spanned by the vectors (dx1~e1, ..., dxn~en). We have
then with the multilinearity property of the determinants

(dV )2 = (dx1...dxn)2|det(eµ.eν)|,

such that

dV =
√

|g|dx1...dxn, (22)

where g is the determinant of the metric tensor. Eq.(22) is the final expression of the
infinitesimal element of volume integration in curvilinear coordinates.

Example: spherical coordinates

Let us take the example of spherical coordinates in 3-dimensional (flat) space. The
curvilinear coordinates (r, θ, φ) are defined from the euclidean coordinates (x, y, z) by

x = r sin θ cos φ

y = r sin θ sin φ

z = r cos θ.

The basis vectors (~e1, ~e2, ~e3) corresponding to the system of curvilinear coordinates are

defined as in Eq.(19) from the orthonormal basis vectors (~ı,~, ~k) by
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~e1 =
∂x

∂r
~ı +

∂y

∂r
~ +

∂z

∂r
~k = ~er

~e2 =
∂x

∂φ
~ı +

∂y

∂φ
~ +

∂z

∂φ
~k = r sin θ~eφ

~e3 =
∂x

∂θ
~ı +

∂y

∂θ
~ +

∂z

∂θ
~k = r~eθ

where (~er, ~eφ, ~eθ) form an orthonormal basis. The metric tensor is thus

gkl =







1 0 0
0 r2 sin2 θ 0
0 0 r2





 ,

and its inverse

gkl =







1 0 0
0 1

r2 sin2 0
0 0 1

r2





 . (23)

From this result, we find that the determinant of the metric tensor is g = r4 sin2 θ and thus
the infinitesimal volume is dV = r2 sin θdrdθdφ, as well known.

We can also compute the gradient of a scalar function f in spherical coordinates. The
following definition of the gradient is independent of the basis:

~∇f = gkl∂kf~el,

and we find from the inverse metric (23) that in spherical coordinates it reads

~∇f = g11∂f

∂r
~e1 + g22∂f

∂φ
~e2 + g33∂f

∂θ
~e3

=
∂f

∂r
~er +

1

r sin θ

∂f

∂φ
~eφ +

1

r

∂f

∂θ
~eθ,

as also well-known.

2.3 Covariant derivatives

Since the basis 4-vectors eµ depend on space-time coordinates, a 4-vector v = vνeν will
depend on space-time coordinates via its components vν and via eν. We define then the
covariant derivative ∇µ of vν as

dv = ∇µvνdxµeν . (24)
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To compute this covariant derivative, we first define the Christoffel symbol Γρ
νµ by

deµ = ∂νeµdxν = Γρ
νµ eρdxν (25)

and write then

dv = d(vνeν) = dvνeν + vνdeν

=
∂vν

∂xµ
dxµeν + Γρ

µν vνdxµeρ,

to conclude that

∇µv
ν = ∂µvν + Γν

µρ vρ. (26)

The Christoffel symbols contain the information about the space-time geometry and its
properties will be seen in the next section. We can say here that in a flat space-time we can
always find a coordinate system where all the Γν

µρ vanish (this can be seen as a definition
of flat space-time).

We can then derive the covariant derivatives of the contravariant components of a
tensor. Let us consider a tensor of rank 2 for the sake of clarity. We have

dT(2) = dT µνeµ ⊗ eν + T µν [deµ ⊗ eν + eµ ⊗ deν]

= ∂ρT
µνdxρeµ ⊗ eν + T µνΓσ

ρµeσ ⊗ eνdxρ + T µνΓσ
ρνeµ ⊗ eσdxρ

=
[

∂ρT
µν + T σνΓµ

ρσ + T µσΓν
ρσ

]

eµ ⊗ eνdxρ,

such that finally

∇ρT
µν = ∂ρT

µν + Γµ
ρσ T σν + Γν

ρσ T µσ. (27)

For a tensor of rank r, we will have a contribution Γµi
ρσ for every indice µi with i = 1, .., r.

We note that the covariant derivative of a scalar is its usual derivative, since by defi-
nition a scalar does not depend on the frame (the basis 4-vectors eµ do not appear in its
definition).

We can also define the covariant derivatives of the covariant components of a 4-vector.
Let us consider for this a constant 4-vector w, i.e. with vanishing covariant derivative:
∇µwν = 0, such that ∂µwν = −Γν

µρ wρ. The scalar product with a 4-vector v is then

d(v.w) = ∂µ(v.w)dxµ = wν
(

∂µvν − Γρ
µν vρ

)

dxµ.

But we also have d(v.w) = w.dv = wν∇µvνdxµ, so that

∇µvν = ∂µvν − Γρ
µν vρ
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We can show in a similarily way that for a tensor of rank 2

∇ρTµν = ∂ρTµν − Γσ
ρµ Tσν − Γσ

ρν Tµσ. (28)

To conclude this section, let us look at the covariant derivatives of the metric tensor.
From Eq.(28) and the definition of gµν we have

∇ρgµν = ∂ρgµν − Γσ
ρµ gσν − Γσ

ρν gµσ

= ∂ρ(eµ.eν) − Γσ
ρµ gσν − Γσ

ρν gµσ

= Γσ
ρµ eσ.eν + Γσ

ρν eµ.eσ − Γσ
ρµ gσν − Γσ

ρν gµσ,

such that finally

∇ρgµν = 0.

This important property is the analogue of ∂ρηµν = 0 in flat space-time. We can show
now the similar property for the contravariant components gµν. For a general matrix A
depending on a parameter t, we have by definition AA−1 = 1, where 1 is the unity matrix.
Taking a derivative with respect to t gives (dA/dt)A−1 + A(dA−1/dt) = 0 such that

dA−1

dt
= −A−1dA

dt
A−1.

Applying this result to gµν we obtain

∂ρg
µν = −gµσ(∂ρgσλ)g

λν.

Thus we can write with the help of Eq.(27)

∇ρg
µν = −gµσ(∂ρgσλ)g

λν + gσνΓµ
ρσ + gµσΓν

ρσ

= −gµσ
[

∂ρgσλ − gσδΓ
δ
ρλ − gδλΓ

δ
ρσ

]

gλν

= −gµσ(∇ρgσλ)g
λν

= 0

2.4 Properties of the Cristoffel symbol

An important property of the Cristoffel symbol deals with its symmetry under the exchange
of its two lower indices. To see this, we use the commutativity of the derivatives and write

∂µ∂νM = ∂ν∂µM,
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so that ∂µeν = ∂νeµ. Then from the definition (25) we conclude that

Γρ
µν = Γρ

νµ. (29)

Let us now give the expression of the Cristoffel symbols in terms of the metric tensor.
We have

dgµν = deµ.eν + eµ.deν = Γρ
σµ dxσeρ.eν + Γρ

σν dxσeµ.eρ,

which implies

∂σgµν = Γρ
σµ gρν + Γρ

σν gµρ.

We define then Γσµν = Γρ
µν gρσ and can write

∂σgµν = Γµσν + Γνσµ. (30)

If we make a circular permutation of the indices, we obtain the similar equations

∂νgσµ = Γσνµ + Γµνσ

∂µgνσ = Γνµσ + Γσµν . (31)

Using then the symmetry property (29) we obtain from Eqs.(30) and (31)

Γσµν =
1

2
(∂µgσν + ∂νgµσ − ∂σgµν) (32)

Finally it is important to stress that Γµσν are not the components of a tensor, what can
be checked by making a change of basis on the metric tensor. This comes from the fact
that the coefficients ∂x′µ/∂xρ appearing in the transformation law (20) are not constants
and thus will give an additional contribution in the derivatives of (32).

2.5 Parallel transport

We wish to generalize the notion of prallelism to curved space-time. Let C be a curve
parametrized by s. The tangent 4-vector t of C is defined at each point by

tµ =
dxµ(s)

ds
. (33)

We say that a given 4-vector v depending on space-time coordinates is parallely transported
along C if each of its component vν is a constant along C, i.e. if its (covariant) gradient
is always perpendicular to the tangent t: tµ∇µvν = 0 (remember that the gradient of a
function φ is perpendicular to the surfaces φ =constant). With the definition of t and the
expression of the covariant derivative, the condition of parallel transport also reads
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dvν

ds
+ Γν

µρ tµvρ = 0,

since we have tµ∂µ = d/ds.
We can define a geodesic as a curve whose tangent is parallely transported, such that

for any ν we have tµ∇µtν = 0. With the definition (33) of the tangent, the equation of a
geodesic is then given by the equation

d2xν

ds2
+ Γν

µρ

dxµ

ds

dxρ

ds
= 0. (34)

We recognize in Eq.(34) the equation of the shortest paths in a curved space, as can be
found in the course of General Relativity. Thus the tangent of the trajectory of a ray of
light (which is a geodesic) is parallely transported.

2.6 Curvature tensor

To conclude with this introduction to tensor calculus in curved space-time, we introduce
the curvature tensor which plays a fundamental role in General Relativity since it appears
in the Einstein equation which describes the interplay between space-time geometry and
matter distribution.

In a flat space, if a vector is parallely transported along a closed curve, it will come
back to its initial configuration at the end of the transport. In a curved space it will not,
and the ’curvature tensor’ describes this change of configuration.

Consider a 4-vector parallely transported along a closed curve C of tangent tν = dxν/ds,
such that

dxν∇νA
µ = dxν∂νA

µ + dxνΓµ
νρ Aρ = 0 (35)

Its variation along C (circulation of its derivative) is then

∆Aµ =
∮

C
dxν∂νA

µ = −
∮

C
dxνΓµ

νρ Aρ (36)

We use then the generalization of Stokes’ theorem to 4 dimensions and write the circulation
(36) as a flux across a surface S limited by C:

∆Aµ = −
∫

S
dSσλ

[

∂σ

(

Γµ
λρ Aρ

)

− ∂λ

(

Γµ
σρ Aρ

)]

,

where dSσλ = dxσdx′λ − dxλdx′σ is the infinitesimal surface spanned by two infinitesimal
4-vectors dx and dx′ in the plane (σ, λ) (the justification if the same as the one which was
given in section 2.2: dSσλ is a two-dimensionnal ’volume’). Using again Eq.(35), we find

∆Aµ =
∫

S
dSσλ Rµ

ρσλ Aρ,
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where we define the curvature tensor R(4) of rank 4 with components

Rµ
ρσλ = ∂σΓµ

ρλ − ∂λΓ
µ
σρ + Γµ

ληΓ
η
σρ − Γµ

σηΓ
η
λρ (37)

Note the following important properties of R. First, R is a tensor, whereas the Cristoffel
symbols are not. This is because the unwanted terms appearing in Γµ

ρλ in a change of
frame cancel in the expression (37). Then we have obviously the antisymmetric properties

Rµ
ρσλ = −Rµ

ρλσ and Rµ
ρσλ = −Rρ

µσλ

We define then the Ricci tensor R(2) which appears in the Einstein equation: this tensor
of rank 2 has components

Rµν = Rρ
µσν g σ

ρ = Rρ
µσν δσ

ρ = Rρ
µρν

Finally, the scalar curvature is defined as the trace of the Ricci tensor:

R = Rµν gµν = R µ
µ = Rµ

µ,

and its value is of course independent of the frame in which it is computed (a scalar is by
definition independent of the coordinate system and can be seen as a tensor of rank 0).
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