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Abstract. This paper is a brief introduction to the “cyclic model of the universe,” a radical alterna-
tive to standard big bang/inflationary theory in which space and time exist indefinitely, inflation is
avoided, and the universe undergoes periodic epochs of expansion and conclusion. This introduction
explains the novel way in which density perturbations are generated which seed large scale structure
formation and produce spatial variations in the cosmic microwave background temperature.

The cyclic model of the universe [1, 2] is a radical alternative to the standard inflation-
ary/big bang model [3, 4]. One key difference is the general flow of the cosmic evolution.
In the standard model, the universe expands from the big bang and proceeds monoton-
ically, transforming the cosmos from hot to cold and from dense to dilute. In the cyclic
model, the evolution is periodic. The universe undergoes epochs of expansion during
which its temperature and density decrease, but, after the density becomes negligibly
small, a sequence of events occurs which creates new matter and radiation that reheats
the universe to high temperature and density and triggers a new period of expansion and
cooling.

A second key difference is the events that shape the large scale structure of the uni-
verse. In the standard picture, a brief period of hyper-rapid expansion (inflation) shortly
following the big bang makes the universe homogeneous and isotropic, flattens the spa-
tial curvature, and creates a nearly scale-invariant spectrum of density fluctuations. In
the cyclic model, inflation is replaced by physical processes that occurred a cycle ago,
before the last bang. These processes entail energies and timescales that are one hundred
orders of magnitude different from inflation. Furthermore, the physics that creates the
density fluctuations that is fundamentally different.

Despite these extraordinary differences, the cyclic model appears capable of repro-
ducing all of the successful predictions of the standard model with fewer ingredients.
Not all predictions are identical, either. The cyclic and inflationary models have expo-
nentially different predictions for the spectrum of primordial gravitational waves, for
example. So, there are future tests which can discriminate the two models. At present,
though, both models are in equally good agreement with the data.



THE CYCLIC MODEL: THE BRANE PICTURE

The cyclic model is inspired by recent concepts in superstring theory, particularly M-
theory, the Horava-Witten model, branes, orbifolds and extra dimensions [6, 1], as
well as a precursor cosmological model known as the “ekpyrotic scenario” [7]. The
cosmological model does not require these features. We can pose the theory in a field
theoretic language that is more easily compared to inflation. However, the M-theory
description provides a simple and compelling geometrical picture that provides a natural
intuition about how the model works. So, we will present here both the M-theory and
field theory descriptions here.

In heterotic M-theory models, our three-dimensional universe is a hypersurface em-
bedded in a spacetime with an extra spatial dimension. (Actually, in the Horava-Witten
model, there are 6 additional spatial dimensions compactified on a Calabi-Yau manifold,
but the manifold is so small that the six dimensions can be neglected for our purposes.)
The hypersurface is a boundary or orbifold plane of the extra dimension separated by
a finite distance from a second boundary/orbifold. The orbifolds have energy and mo-
mentum. They can interact through gravity and exchange virtual membranes. In the
cyclic model, the orbifolds are drawn together by these interactions, and they collide
and bounce at regular intervals.

The model goes through the following stages. Each cycle begins with a “bang,"”
a collision between branes that creates matter and radiation. The universe proceeds
directly to the radiation-dominated epoch without encountering any inflation. The model
must introduce a mechanism for making the universe homogeneous, isotropic and flat,
and for creating a nearly scale-invariant spectrum of density perturbations. However,
this will be accomplished by a sequence of events that occurs at a different point in the
cycle. Hence, the universe proceeds directly after the bang to radiation domination to
matter domination and, finally, to dark energy domination.

In the big bang/ inflationary model, dark energy comes as a complete surprise. It is not
predicted or required. Rather, dark energy is added ad hoc to make the model consistent
with the recent observations of cosmic acceleration [8, 9, 10].

In the cyclic model, dark energy moves to center stage as an essential element of the
cyclic model. Its source is the potential energy associated with the interaction between
branes. When the branes are far apart, the energy is presumed to be small and positive,
acting as a form of quintessence that causes the branes to stretch at an accelerating rate,
expanding by a factor of two every 15 billion years. Continued for 100 doublings or
a trillion years, the dark energy thins out the matter and radiation in the universe to a
point where the universe approaches a homogeneous vacuum. Furthermore, any warps
or curvature in the branes are stretched out. Hence, two of the roles of inflation, making
the universe homogeneous and flat, are replaced by dark energy in the cyclic model.
Dark energy also is important in making the cyclic solution a classical attractor. That
is, if the branes are kicked away from the ideal cyclic orbit, the period of dark energy
domination causes the evolution to converge after a cycle or two to the ideal evolution.

After the matter and radiation have been thinned out, the universe begins a period of
“contraction.” But, unlike earlier cyclic models discussed in the 1920°s and 1930’s [11]
our three dimensions do not contract and the temperature and density do not diverge.
Rather, the extra dimension between the orbifolds contracts as the two branes approach



one another and head towards collision. The contraction ends in a “crunch™ at which
matter and radiation are created. The two branes bounce apart, but now filled with
the newly created hot matter-radiation whose density dominates the older, thinned out
matter-radiation from the previous cycle. Due to gravity, the new matter and radiation
causes the branes to begin to stretch again and damp the motion of branes. The universe
has returned to the same state as it was after the last bang and the cycle begins anew.

During the contraction phase, the branes undergo quantum fluctuations that cause
them to wrinkle. For simple, exponentially decreasing interbrane potentials, the wrinkles
form a scale-invariant spectrum. As a result of the wrinkles, the branes collide, bounce
and reheat at different times at different locations. The collision thereby imprints a
scale invariant spectrum of spatial variations in the temperature on the branes after the
collision.

THE CYCLIC MODEL: THE FIELD THEORETIC PICTURE

As we have noted, the cyclic story can be described in terms of an ordinary four-
dimensional field theory, which can be obtained by taking the long wavelength limit
of the brane picture [1, 2]. The distance between branes becomes a moduli (scalar) field
@. The interbrane interaction is replaced by a scalar field potential, V (¢). The different
stages in the cyclic model in the brane picture are in one-to-one correspondence to the
motion of the scalar field along the potential. See Fig. 1.

Then, the action S describing describing gravity, the scalar field ¢, and the matter-
radiation fluid is:

5= [ %/ gorg® - 300 -V(0)+ B (@)px). ®

where g is the determinant of the Friedmann-Robertson-Walker metric g,,,,, G is New-
ton’s constant and Z is the Ricci scalar.

Particularly notable is the coupling (@) between @ and the matter-radiation (og)
density. This coupling is crucial because it accounts for the fact that the temperature and
density do not diverge at the crunch. If B were set to unity, the solution to the equation
of motion would be p, 0 1/a* where a is the scale factor. Then, at the crunch where
a— 0, the density would diverge. (This describes the case of the older cyclic models. )
However, the 3 factor has the property that  — o as a — 0 such that a8 — constant.
The revised solution to the equation of motion is pg O 1/(aB)* which approaches a
constant as a— 0. The energy, once thinned out during the dark energy dominated phase,
remains thinned out at the bounce.

If we had begun with the field theory and simply introduced the (-factor by hand,
it would have seemed incredibly fine-tuned to choose a form which diverges as 1/a.
However, we now understand that the form arises automatically if ¢ is the modulus
field that describes the size of the extra dimension. The B-factor simply reflects the fact
that the extra-dimension collapses but our three-dimensions do not. As a result, entropy
produced during one cycle is not concentrated at the crunch and does not contribute
significantly to the entropy density at the beginning of the next cycle. Hence, cycles can
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FIGURE 1. Schematic plot of the potential V (¢) as a function of the field ¢ for (a) inflationary cosmol-
ogy and (b) cyclic models. For inflation, accelerated expansion and production of density perturbations
occur in stage 1; reheating occurs at stage 2. For the cyclic model, present-day accelerated expansion
occurs in stages 1 and 2; deceleration in stage 3; contraction and production of density perturbations
begins in stage 4; contraction (dominated by scalar field kinetic energy) in stage 5; bounce, production of
matter-radiation, and re-expansion in stage 6; matter-radiation dominated epoch begins in stage 7, and the
cycle begins anew.

continue for an arbitrarily long time and there is no practical way of distinguishing one
cycle from the next.

ORIGIN OF DENSITY PERTURBATIONS

If the cyclic model can be described in terms of ordinary field theory, then it may
seem surprising that it is possible to generate a nearly scale invariant spectrum density
perturbations. Perturbations in theories with scalar fields were investigated in the 1980’s
[12, 13], and it was found that a nearly scale-invariant arises if the scalar field has a
nearly de Sitter equation of state. How does the cyclic model fit in? The perturbations
cannot be generated during the dark energy dominated phase because the dark energy
density is exponentially too small to generate a spectrum with the right amplitude.

The explanation, as has been recently discovered [14], is that there are actually three
distinct ways of producing a nearly scale-invariant spectrum, and that inflation represents
only one of them. The three ways can be characterized by w= (3¢? —V)/3¢? +V), the
effective equation of state of the scalar field. Case | is where w = 1 and the universe
is expanding, the example of inflation. Case Il is a contracting universe with w = 0,



an example which has not been used in cosmological models to date. Case Il is a
contracting universe with w >> 1 — the situation that applies in the cyclic model. (Here
I am only considering cases where w is nearly constant, cases which can be obtained
with simple potentials; contrived examples can also be constructed in which w is time-
dependent.)

We know how design a scalar field potential so that w =~ —1. If the potential is
sufficiently flat (V//V and V”/V are very small), then the field ¢ rolls slowly down
the potential, V is nearly constant for an extended period, and w approaches —1. It is in
regime where the potential is flat that the perturbations are produced and, hence, where
there are tight constraints on the form of V (¢@). After the flat portion of the potential,
there is a great deal of freedom in choosing the potential shape.

What is required to obtain w>> 1? From the expression for w, it is apparent that this is
only possible if the potential is negative. In particular, for a negative exponentially steep
potential V ~ —exp(cg), the solutions to the equation of motion have a scaling solution
inwhich ¢?/2V is constant and approximately —1. Consequently, w is much greater than
unity and nearly constant. Curiously, a potential which rolls from positive to negative is
just what is needed to go from an accelerating universe to a contracting universe, so the
requirements for a scale-invariant spectrum dovetail with overall scenario. In analogy
with inflation, this steep regime of the potential corresponding to the generation of
fluctuations is where there are tight constraints on the form of the potential. Although
the standard example of a potential has a flat positive plateau on one side and rise of V
on the other [1, 2], there is actually tremendous flexibility in choosing the shape of V()
way from the steep portion [15]. See Fig. 2. For example, the positive plateau may be
replaced by an increasing function or even a locally stable (positive energy) minimum.
Similarly, the potential need approach zero or even have a minimum. (These features are
put in the standard example motivated by M-theory [1, 16], but they are not required for
cyclic cosmology.)

The generation of fluctuations for w>> 1 can be understood heuristically by examin-
ing the perturbed Klein-Gordan equation [17]:

¢l = — <k2 -7 +\(¢(p> 5¢, )

where ¢(x,t) has been expanded in fourier components &g, (t) with wavenumber k
and prime is derivative with respect to conformal time n. The a”/a term is due to
gravitational expansion, and the last term is due to the self-interaction of the scalar field.
This equation applies equally to inflation and to cyclic models. The well-known result[]
from inflation is that, in order to obtain a scale invariant spectrum, the combination of the
last two terms on the right hand side must behave as (2/n?)dq,. In the case of inflation,
a(n)=-1/n and V oo is negligible. So, the scale invariant fluctuations are due entirely

to the gravity term. A second solution exists where a’/a = 2/n? and the gravity term
dominates: namely, a= n2, the dust-like w = 0 universe, Case Il above.

The cyclic model corresponds to the limit where the gravity term is negligible and,
instead, the perturbation equation is driven by the potential term. For the negative
exponential potential, for example, the scaling solution corresponds to V(p’(p ~2/n2.
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FIGURE 2. Plots of possible cyclic potentials showing how they can be viewed as having three separate
parts: (a) positive potential energy density; (b) steep, negative potential; (c) less steep or increasing
potential. The figure is intended to emphasize that the only tight constraints are for the negative, steep
portion of the potential (b) where perturbations are generated.

In sum, we have seen a remarkable result: The perturbations are produced in in-
flationary models under conditions that are extremely different from cyclic models —
hyper-rapid expansion as opposed to ultra-slow contraction — and yet the perturbation
equations expressed in terms of n are isomorphic and the outcome is the same. Both
produce a nearly scale-invariant, gaussian spectrum of adiabatic density perturbations.

We should note that the derivation of the density perturbation spectrum outlined
here is not rigorous and it does not follow what happens to the perturbations at the
bounce. At the bounce, fluctuations in the scalar field (or branes) lead to variations
in the time of collision and of reheating to high temperature [1, 17]. In this way,
the fluctuations are converted directly into a spectrum of density perturbations after
the bounce. This argument is similar to the “time-delay” approach [13] to deriving
perturbations in inflation.

Formal methods should use gauge invariant variables and include gravitational back-
reaction. The formal analysis reveals the same conclusions as the heuristic derivation
above; the gravitational backreaction is negligible [17, 14]. Some other authors attempt-
ing their own methods have claimed the opposite result. A common error has been to
choose a gauge invariant variable that does not include the growing mode perturbations
to leading order. This mistake is easy to make since the appropriate gauge invariant
variables for inflationary cosmology fail to include the growing mode perturbation in a
contracting cyclic phase. Failure to take proper account of this difference results in acci-
dentally projecting out the scale-invariant spectrum of fluctuations. A second common



error has been to ignore the radiation produced at the bounce. In our computation, this
leads to elimination of the scale-invariant fluctuations [17]. The reason is clear: in the no-
radiation limit, the evolution is time-reversal invariant. Any perturbations generated dur-
ing contraction translate into purely decay perturbations after the bounce. The radiation
breaks the symmetry between contracting and expanding. Now the scale-invariant per-
turbations produced during contraction match to a combination of growing and decay-
ing modes after the bounce [17]. The growing mode provides the needed scale-invariant
spectrum of density perturbations. However, this spectrum only exists if the bounce is
not time-reversible.

GRAVITATIONAL WAVES

If both produce the same outcome, what is the difference? The outcome is only the
same when it comes to density perturbations. The difference shows up in the spectrum
of gravitational waves [1, 2, 17, 18]. To see this, consider that the perturbation equation
above applies to all fields. For inflation, the gravity term dominates over the potential
term, which is proportional to the mass of the inflaton during inflation. Gravity will,
therefore, dominate in the equation describing any light mass fields, including the
two massless polarization modes of the metric fluctuations. All such fields will have
scale-invariant fluctuations. For most fields, this is irrelevant because the fluctuations
leave no distinctive cosmic signature. Fluctuations of the massless metric perturbations,
though, propagate as gravitational waves, leaving a distinctive signature in the cosmic
microwave background anisotropy as well as in gravitational wave detectors. Hence,
inflation predicts that there should be a nearly scale-invariant spectrum of gravitational
waves in addition to density fluctuations.

For the cyclic model, the potential term dominates and the gravitational term is
irrelevant. Hence, cyclic models only produce scale invariant fluctuations in the scalar
field. For gravitational waves, there is only the a’/a term and the spectrum is very
blue. That is, the amplitude drops from some small value at very short wavelengths
to exponentially smaller values at cosmic scales.

This dramatic difference from inflationary cosmology (see Fig. 3 from [18]) is the
most promising approach for distinguishing the two scenarios. In the near-term, measur-
ing the polarization of the cosmic microwave background is most sensitive method for
searching for stochastic gravitational waves. Gravitational waves leave a characteristic
“B-mode" polarization pattern that is smaller in amplitude than the “E-mode" created
by density perturbations, but distinctive [19, 20]. Detector sensitivities anticipated in the
coming decade should be sufficient to cover a wide span of the most likely inflation-
ary models [21]. As suggested in Fig. 3, direct detection of gravitational waves from
inflation is not feasible in the next decade. Detection of the cosmic gravitational waves
would clearly support inflation and disprove the cyclic scenario. The absence of detec-
tion would not disprove inflation, but it would force us towards more arcane inflationary
models versus the comparatively simpler cyclic model.
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FIGURE 3. Plots of the dimensional strain Ah vs. frequency for the gravitational waves anticipated in
cyclic (solid) and inflationary models (short-dashed) Included are constraints from big bang nucleosynthe-
sis (BBN, excludes range to upper right of long-dashed line) and best limits anticipated from the proposed
LISA and advanced LIGO gravitational wave detectors. The cosmic microwave background (CMB) and
pulsar constraints are shown dashed to indicate that they lie beyond the top of the figure. Both models
satisfy the BBN constraints for typical parameters. CMB is currently the most promising approach for
observing inflationary gravitational waves. The cyclic prediction is orders of magnitude below current
and projected tests.

CONSTRUCTING THE CYCLIC POTENTIAL

We have summarized the basic ingredients needed to compute the spectrum of density
perturbations, and the reader can look to Refs. [14, 17] for the technical details. But
how does this consideration constrain the effective potential for the cyclic model? For
inflation, the most stringent constraints are on the flat part of the potential, the range
of the inflaton field where the density perturbations are generated. The constraints are
commonly expressed as bounds on two “slow-roll" parameters:

N\ 2
E= (%) < land 3)
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For the cyclic model, the analogous constraints are on the steep portion of the potential
where perturbations are generated. See Fig. 2. The constraints can be expressed in terms
of two “fast-roll" parameters [14, 15]:

2
€= (%) < land (5)
. VI/V
n= 1- (VI)Z <1 (6)

The first constraint forces the slope to be steep and the second fixes the curvature, where
each applies to the range of ¢ where the fluctuations are generated that are within the
horizon today.

The result is that the constraints in the two models are remarkably similar. The bad
news is that the degree of tuning in cyclic models is no better than in inflationary models.
The good news is that it is no worse. Also, recall, the cyclic model avoids the need for
an inflaton, the inflation potential, and two episodes of accelerated expansion. So, there
is actually some net gain for cyclic models, even if not in terms of degree of tuning. A
further discussion of designing potentials for cyclic models can be found in [15].

In sum, the cyclic model has rapidly developed into a promising and provocative al-
ternative to the standard big bang inflationary picture. There remain open issues, most
especially a rigorous demonstration that the bounce can occur when quantum fluctua-
tions are included. (A related, unproven issue for inflationary cosmology is a rigorous
demonstration that the universe emerges from the big bang with the right conditions
to have inflation.) But, other than this uncertainty, the other key aspects of the model
are well-developed in technical detail. So, it appears for the next few years, there will
be continued development of the models vigorous debates about which is theoretically
preferable. Ultimately, though the answer must be determined by observation, either the
detection of primordial gravitational waves or of other distinguishing features yet to be
determined. What is at stake is nothing less than our understanding of the past history
and future fate of the universe.

This work was supported in part by US Department of Energy grant DE-FGO02-
91ER40671 (PJS) and by PPARC-UK (NT).
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