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SECTION A

Each question carries 8 marks.

1. (a) [5 Marks] A spacecraft moves around a planet of mass m and radius r along a
circular orbit of radius R = 2r. Ignoring the transverse Doppler effect, evaluate
the redshift z of the radio signal emitted by a probe left on the surface of the
planet and received by the spacecraft.

(b) [3 Marks] Another spacecraft of height h moves very far from any gravitating
bodies with acceleration a. Show that the redshift of a photon emitted at the
bottom of the rocket and detected at its top is z = ah/c2. [Hint: First solve the
problem as for part (a) for radii r and R = r + h, where h ¿ r; then apply the
equivalence principle.]

A1(a)(seen similar)

•[2 Marks]

From conservation of energy, neglecting transverse Doppler effect, we have

hνob − Gm

R

hνob

c2
= hνem − Gm

R

hνem

c2
.

•[1 Mark]

Thus
νob

νem

=
1− Gm

rc2

1− Gm
Rc2

.

•[2 Marks]

Taking into account that in Newtonian limit Gm/rc2 ¿ 1, we have

νob

νem

≈ 1− Gm

rc2

(
1− r

R

)
= 1− Gm

2rc2
,

then

z =
νem − νob

νem

= 1− νob

νem

=
GM

rc2
(1− r

R
) =

Gm

2rc2
.

A1(b)(seen similar)

•[2 Marks]

If R = r + h and h ¿ r

z =
GM

rc2
(1− r

r + h
) ≈ GM

rc2
(1− (1− h

r
)) =

GMh

r2c2
=

gh

c2
,

where g is free fall acceleration at the surface of gravitating body.

•[1 Mark]

According to the equivalence principle

z =
ah

c2
.
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2. (a) [3 Marks] Give the definition of the mixed tensor of the second rank in terms
of the transformation of curvilinear coordinates (you can assume that a mixed
tensor of the second rank is transformed as a product of covariant and contrvariant
vectors).

(b) [5 Marks] In the non-rotating system of Cartesian coordinates (x, y, z)

Ai
k =




0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


 .

Using coordinate transformation from Cartesian to the uniformly rotating cylin-
drical coordinates (r, θ, φ)

x = r cos(θ + Ωt), y = r sin(θ + Ωt), z = Z,

show that in the latter coordinates

A
′1
0 = −rΩ

2c
sin 2(θ + Ωt).

A2(a)(seen similar)

•[1 Mark]

A contravariant vector Ai transforms as

Ai =
∂xi

∂x′n
A
′n,

and this is the only definition of the contravariant vector.

•[1 Mark]

A covariant vector Bi transforms as

Bi =
∂x

′n

∂xi
B
′
n,

and this is the only definition of the covariant vector.

•[1 Mark]

A mixed tensor Ci
k transforms as product of Ai and Bk:

Ci
k = AiBk =

∂xi

∂x′n
A
′n ∂x

′m

∂xk
B
′
m =

∂xi

∂x′n
∂x

′m

∂xk
C
′n
m .

and this is the definition of the mixed tensor of the second rank.

A2(b)(unseen)

•[2 Marks]

A
′1
0 =

∂x
′1

∂xn

∂xm

∂x0
An

m =
∂r

∂x

∂x

c∂T
,
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•[1 Mark]

taking into account that

r =
√

x2 + y2,
∂r

∂x
=

x

r
= cos[2(θ + Ωt)],

and
∂x

c∂T
=

∂x

c∂t
= −Ωy

c
,

•[2 Marks]

we have thus

A
′1
0 = −Ωy

c
cos(θ + Ωt) = −rΩ

2c
sin 2(θ + Ωt).

3. (a) [4 Marks] Using the formulae for the Cristoffel symbol and covariant derivatives
given in the rubric or otherwise, show that covariant derivatives of contrvariant
metric tensor are equal to zero, gik

;n = 0.

(b) [4 Marks] Using the Einstein Equations show that in empty space-time

An
;n;l = An

;l;n

for an arbitrary covariant vector Ai.

A3(a)(seen similar)

•[1 Mark]

The relation
DAi = gikDAk

is valid for covariant differential as for any vector.

•[2 Marks]

On other hand
DAi = D(gikAk) = gikDAk + AkDgik,

thus
gikDAk = gikDAk + AkDgik.

Taking into account that Ai is arbitrary vector we have

•[1 Mark]
Dgik = gik

;ndxn = 0

for arbitrary dxn. Hence
gik
;n = 0.

A3(b)(unseen )

•[2 Marks]

From the definition of the Riemann tensor

Ai
;k;l − Ai

;l;k = −AmRi
mkl,
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by summation i = k = n we have

An
;n;l − An

;l;n = −AmRn
mnl = −AmRml,

where Rml is the Ricci tensor.

•[2 Marks]

According to the Einstein equations in empty space-time, i.e when stress-energy
tensor vanishes, Tik = 0, the Ricci tensor is also vanishes, hence

An
;n;l = An

;l;n.

4. (a) [3 Marks] A gravitational field is described by the interval

ds2 = t2ηikdxidxk.

Show that all non vanishing components of the Cristophel symbol can be repre-
sented in the following form

Γi
nk =

1

t
γi

nk, where γi
nk = δ0

nδ
i
k + δ0

kδ
i
n − δi

0ηkn.

(b) [5 Marks] Show that the scalar curvature R of the above field is equal to zero.

A4(a)

•[1 Mark] (unseen)

gik = t2ηik, hence gik = t−2ηik,

•[2 Marks]

Γi
km =

1

2
gin (gkn,m + gmn,k − gkm,n) =

1

2t2
ηim(δ0

n · 2tηkm + δ0
k · 2tηnm− δ0

m · 2tηkn) =

=
1

t
(δ0

nδi
k + δ0

kδ
i
n − δ0

mηimηkn) =

=
1

t
(δ0

nδ
i
k + δ0

kδ
i
n − δi

0ηkn) =
1

t
γi

nk.

A4(b)(unseen )

•[2 Marks]

R = gikRik = t−2ηik(−δ0
l

1

t2
γl

ik + δ0
k

1

t2
γl

il +
1

t2
γl

ikγ
m
lm −

1

t2
γm

il γl
km) =

= t−4Q, where Q = −ηikγ0
ik + γl

0l + ηikγl
ikγ

m
lm − ηikγm

il γl
km =
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•[2 Marks]

= −ηikγ0
ik + γl

0l + ηikγl
ik(δ

m
l δ0

m + δm
mδ0

l − δm0ηlm)−

−ηikγm
il (δl

kδ
0
m + δl

mδ0
k − δl0ηkm) =

= 2ηikγ0
ik + γl

0l = δl
lδ

0
0 + δl

0δ
0
l − δl

0η0l + 2ηik(δ0
i δ

0
k + δ0

i δ
0
k − δ0

0ηik) =

•[1 Mark]
4 + 1− 1 + 2(2− 4) = 0.

5. (a) [5 Marks] Using the Einstein equations, the Bianchi identity and the symmetry
properties of the Riemann tensor, show that covariant divergence of the stress-
energy tensor is equal to zero.

(b) [2 Marks] Take the stress-energy tensor in the form

T i
k =




ε 0 0 0
0 −p 0 0
0 0 −p 0
0 0 0 −p


 ,

where ε is energy density and p is pressure (if p > 0) or tension (if p < 0). Using
the Einstein equations, evaluate the scalar curvature in terms of ε and p.

A5(a)(seen similar)

•[1 Mark]

Contracting the Bianchi identity on the pairs of indices ik and ln

gik(Rn
ikn;m + Rn

imk;n + Rn
inm;k) = 0,

and taking into account that covariant derivatives of the metric tensor are equal
to zero we have

•[2 Marks]

[gikRn
ikn];m + [gikRn

imk];n + [gikRn
inm];k = 0,

•[2 Marks]

using symmetry properties and the definition of the Ricci tensor and the scalar
curvature we have

−[gikRn
ink];m + [gikRn

imk];n + [gikRn
inm];k = 0,

−R,m + Rn
m;n + Rk

m;k = 0

hence

Rn
m;n =

1

2
R,m.

•[1 Mark]
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Putting this into the Einstein Equations we have

T i
k;i =

c4

8πG
(Ri

k;i −
1

2
δi
kR,i) = 0.

A5(b)(unseen )

•[2 Marks]

Contracting the Einstein equations we have

R− 1

2
4R =

8πG

c4
T, hence R = −8πG

c4
T = −8πG

c4
(ε− 3p)

6. (a) [3 Marks] The four-velocity and the four-momentum of a particle of mass m in
a gravitational field are defined as

ui =
dxi

ds
, pi = mcui.

Show that uiu
i = 1 and pip

i = m2c2.

(b) [5 Marks] Show that in a static gravitational field with metric interval

ds2 = g00(dx0)2 + gαβdxαdxβ,

the energy of the particle, E = mc2u0, is given by

E =
mc2√g00√

1− v2

c2

,

where

v =
c
√
−gαβdxαdxβ

√
g00dx0

.

A6(a)(seen similar)

•[2 Marks]

Starting from formula for the interval

ds2 = gikdxidxk,

and dividing both side of this equation by ds2 we have

1 = gik
dxi

ds

dxk

ds
= giku

iuk = uiu
i =

•[1 Mark]

=
1

m2c2
pip

i, hence pip
i = m2c2.

uiu
i = 1 and pip

i = m2c2.
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A6(b)(seen similar)

•[1 Mark]

E = mc2u0 = mc2g00u
0 = mc2g00

dx0

ds
=

•[2 Marks]

= mc2g00
dx0

√
g00(dx0)2 + gαβdxαdxβ

;

•[2 Marks]

introducing then the velocity

v =
c
√
−gαβdxαdxβ

√
g00dx0

,

we have

E =
mc2√g00√

1− v2

c2

.

7. (a) [4 Marks] Using the Kerr metric, find the location of the event horizon, rhor, and
the limit of stationarity, rst. Compare these results with the case of a non-rotating
black hole.

(b) [4 Marks] Show that the circle defined by r = rhor and θ = π/2, is the world line
of a photon moving around the rotating black hole with angular velocity

Ωhor =
a

rgrhor

.

A7(a)(seen similar)

•[2 Marks]

The location of horizon: g11 = ∞, hence

∆ = r2 − rgr + a2 = 0,

The larger solution is outer horizon:

rhor =
rg

2
+

√(
rg

2

)2

− a2.

rhor ≤ rg

2
+

rg

2
= rg,

if a = 0, rhor = rg.

•[2 Marks]

8 [This question continues overleaf . . . ]



The location of the limit of stationarity is the surface g00 = 0. For the Kerr metric
g00 = 0 gives

1− rgr

ρ2
= 0,

thus
r2 − rgr + a2 cos2 θ = 0,

r =
1

2
(rg ±

√
r2
g − 4a2 cos2 θ) =

rg

2
±

√
(
rg

2
)2 − a2 cos2 θ.

“+” corresponds to the outer surface g00 = 0 and we should take this solution.

A7(b)(unseen )

•[1 Mark]

As ∆ = 0 we have r2
hor + a2 = rgrhor.

•[3 Mars]

For dφ = Ωhordt

ds2

c2dt2
= 1− rg

rhor

− (r2
hor + a2 +

rga
2

rhor

)Ω2
hor +

2rga

rhor

Ωhor =

= 1− rg

rhor

− (rgrhor +
rga

2

rhor

)Ω2
hor +

2rga

rhor

Ωhor =

= 1− rg

rhor

− rg

rhor

(r2
hor + a2)Ω2

hor +
2rga

rhor

Ωhor =

= 1− rg

rhor

− r2
gΩ

2
hor +

2rga

rhor

Ωhor =

= 1− rg

rhor

− r2
g(

a

rgrhor

)2 +
2rga

rhor

a

rgrhor

=

= 1− rg

rhor

− a2

r2
hor

+ 2
a2

r2
hor

=
r2
hor − rgrhor + a2

r2
hor

=
∆

r2
hor

= 0.

Hence r = rhor and φ = Ωhort correspond to the world-line of photon.
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SECTION B

Each question carries 22 marks.

1. (a) [4 Marks] Consider the motion of a particle in the equatorial plane (θ = π
2
) of the

spherically symmetric Schwarzshild gravitational field. Given that the solution of
the Hamilton-Jacobi equation can be written in the following form

S = −Et + Lφ + Sr(r),

where the constants E = mc2u0 and L = mcu3 are the energy and angular
momentum of the particle, find a differential equation for Sr.

(b) [7 Marks] Show that

E
(
1− rg

r

)−1 dr

dt
= c

√
E2 − U2

eff,

where Ueff is the “effective potential energy” is given by

Ueff(r) = mc2

√√√√
(
1− rg

r

) (
1 +

L2

m2c2r2

)
.

(c) [11 Marks] Explain why the condition E > Ueff(r) determines the admissible

range of the motion. Solve the simultaneous equations Ueff(r) = E and U
′
eff(r) =

0 to show that the radius of the stable circular orbit with angular momentum L
is

r =
L2

m2c2rg


1 +

√
1− 3m2c2r2

g

L2


 .

Evaluate the radius of the innermost stable circular orbit.

B1(a)(seen similar)

•[2 Marks]

Taking θ = π/2 we can write down the Hamilton-Jacobi equation in the Schwarzschild
metric as

(
1− rg

r

)−1
(

∂S

c∂t

)2

−
(
1− rg

r

) (
∂S

∂r

)2

− 1

r2

(
∂S

∂φ

)2

−m2c2 = 0.

•[2 Marks]

Then putting S = −Et + Lφ + Sr(r), we have

(
1− rg

r

)−1 E2

c2
−

(
1− rg

r

) (
dSr

dr

)2

− L2

r2
−m2c2 = 0,

which is the usual differential equation for Sr(r).
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B1(b)(seen similar)

•[2 Marks]

The radial component of the four-momentum can be found as

∂S

∂r
=

dSr

dr
= p1 = g11p

1 = g11
dr

ds
=

√√√√E2

c2

(
1− rg

r

)−2

−
(
m2c2 +

L2

r2

) (
1− rg

r

)−1

=

=
1

c

(
1− rg

r

)−1
√√√√E2 −m2c4

(
1 +

L2

m2c2r2

) (
1− rg

r

)
.

•[1 Mark]

On other hand
dt

ds
= p0 = g00p0 = g00

(
∂S

∂t

)
= −g00E.

•[2 Marks]

Thus

dr

dt
=

dr
ds
dt
ds

=
1

c

(
1− rg

r

) √
E2 − U2

eff
1

E
=

1

c

(
1− rg

r

)−1 √
E2 − U2

eff,

•[2 Marks]

where

Ueff = mc2

√√√√
(

1 +
L2

m2c2r2

) (
1− rg

r

)
,

hence

E
(
1− rg

r

)−1 dr

dt
= c

√
E2 − U2

eff.

B1(c)(seen similar)

•[1 Mark](book work)

For given radius Ueff is equal to the energy of a particle which has the turning
point for this r, i.e. dr/dt = 0, thus the condition E > Ueff determines the
admissible range of the motion.

•[1 Mark](book work)

All circular orbits are determined by simultaneous solution of the equations

Ueff = E and
dUeff
dr

= 0.

•[1 Mark](seen similar)

From dUeff/dr = 0 we have dU2
eff/du = 0, where u = 1/r.

•[2 Marks]
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Hence

−rg

(
1 +

L2u2

m2c2

)
+ (1− rgu)

2L2u

m2c2
= 0, or rgr

2 + 3rg

(
L

mc

)2

− 2
(

L

mc

)2

r = 0.

•[2 Marks]

Solving this equation we have

r± =
L2

m2c2rg

±
√√√√

(
L2

m2c2rg

)2

− 3L2

m2c2
=

L2

m2c2rg


1±

√
1− 3r2

gm
2c2

L2


 .

•[1 Mark]

The larger root corresponds to the stable orbit.

•[1 Mark]

One can see that

1− 3r2
gm

2c2

L2
> 0.

•[2 Marks]

Hence
−
√

3mcrg ≤ L ≤
√

3mcrg.

Substituting L =
√

3mcrg into equation for the radius of circular orbits, we have
for the radius of the innermost stable orbit rlso = 3rg.

2. (a) [5 Marks] Using the equation ds = 0 with θ, φ = const, consider the propagation
of radial light signals in the Schwarzschild space-time. Consider a photon emitted
outward from r = r0 at time t = 0. Show that the world-line of the photon is
given by

ct = r − r0 + rg ln
r − rg

r0 − rg

.

(b) [10 Marks] A particle moves along a radial geodesic in the Schwarzschild metric.
Using the expression for ds and an appropriate component of geodesic equation,
show that if the particle starts to fall freely from infinity, then

r(τ) =
[
r3/2(τ0)− 3

2
cr1/2

g (τ − τ0)
]2/3

,

where τ is the proper time (ds = cdτ).

(c) [7 Marks] A free-falling observer moves radially with zero velocity at infinity
in the gravitational field of Schwarzschild black hole. When it passes the radius
r0 À rg he starts to send outward radio-pulses with constant rate. The very small
time interval between two subsequent pulses measured by clocks of the observer
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is equal to ∆τ ¿ rg/c < r/c. The second observer resting very far from the
black hole receives signals sent by the first observer. Show that the time interval
between the (n + 1)th and the nth pulse depends on n according to

∆tn =
∆τ

1−
√

rg

rn

,

where rn is the radius at which the nth pulse is emitted.

B2(a)(seen similar)

•[1 Mark]

From ds = 0 for θ, φ = const, we have

c2(1− rg

r
)dt2 − (1− rg

r
)−1dr2 = 0,

•[2 Marks]

hence
cdt = (1− rg

r
)−1dr = r(r − rg)

−1dr =
∫

r(r − rg)
−1dr =

=
∫

(r − rg + rg)(r − rg)
−1dr = (r − rg) + rg ln(r − rg) + C.

•[2 Marks]

If at t = 0 r = r0, then

C = −[(r0 − rg) + rg ln(r0 − rg)],

and finally

ct = r − r0 + rg ln
r − rg

r0 − rg

.

B2(b)(seen similar)

•[2 Marks]

A particle moves along radial geodesic in the Schwarzschild metric, then

cd2t

ds2
+ Γ0

00c
2(

dt

ds
)2 + 2Γ0

01c
dt

ds

dr

ds
+ Γ0

11(
dr

ds
)2 = 0.

•[1 Mark]

Γ0
00 =

1

2
g00(g00,0 + g00,0 − g00,0) = 0,

•[1 Mark]

Γ0
01 =

1

2
g00(g00,1+g10,0−g01,0) =

1

2
g00dg00

dr
=

1

2
(1−rg

r
)−1d(1− rg

r
)

dr
=

rg

2r2
(1−rg

r
)−1,
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•[2 Marks]

Γ0
11 =

1

2
g00(g10,1 + g10,1 − g11,0) = 0,

so we have
d2t

ds2
+ +

rg

r2
(1− rg

r
)−1 dt

ds

dr

ds
= 0,

or

dt

ds
(
dt

ds
) + (1− rg

r
)−1 dt

ds

d

ds
(1− rg

r
) = (1− rg

r
)−1 dt

ds
[
dt

ds
(1− rg

r
)] = 0,

hence
dt

ds
(1− rg

r
) = C.

•[1 Mark]

At infinity dt
ds

= c−1, hence C = c−1.

•[2 Marks]

Substituting this into eq. for ds, we have

1 = (1− rg

r
)c2(1− rg

r
)−2c−2 − (1− rg

r
)−1(

dr

ds
)2,

1− rg

r
= 1− (

dr

ds
)2 ⇒ (

dr

dτ
) = −c

√
rg

r
,

we take ”−” for falling objects, then

2

3
r3/2(τ)− r3/2(τ0) = −cr1/2

g (τ − τ0),

•[1 Mark]

and finally

r(τ) = [r3/2(τ0)− 3

2
cr1/2

g (τ − τ0)]
2/3.

B2(c)(unseen)

•[1 Mark]

∆tn = ∆t1 + ∆t2,

where ∆t1 is the time spent by the first observer to travel between rn and rn+1,

and ∆t2 is the time spent by the nth pulse to travel between rn+1 and rn.

•[2 Marks]

∆t1 = ∆τ(1− rg

r
)−1,

•[2 Marks]
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∆t2 =
1

c
∆r(1− rg

r
)−1 =

√
rg

r
∆τ(1− rg

r
)−1,

•[2 Marks]

hence

∆tn = ∆τ(1− rg

r
)−1 +

√
rg

r
∆τ(1− rg

r
)−1 = (1 +

√
rg

r
)∆τ(1− rg

r
)−1,

hence

∆tn =
∆τ

1−
√

rg

rn

.

3. (a) [10 Marks] A weak gravitational wave is a small perturbation of the Minkovski
metric, gik = ηik + hik. Show that gik = ηik − ηinηkmhnk. Use a linear coordinate
transformation

x
′i = xi + ξi,

where ξi are small functions of xi, to impose on hik the following four supplemen-
tary conditions

ηkmhmi,k − 1

2
δk
i η

nmhnm,k = 0.

Show that after such transformation the Ricci tensor is reduced to

Rik = −1

2
ηlm ∂2hik

∂xl∂xm
.

(b) [5 Marks] Consider a ring of test particles initially at rest in the (y, z)-plane, per-
turbed by a plane monochromatic gravitational wave propagating in x-direction
with frequency ω and amplitude h0. Explain what is meant by “+” and “×” polar-
izations. Sketch the shape of the ring at x = 0 and at times t = 0, π

2ω
, π

ω
, 3π
2ω

and 2π
ω

for two different polarizations of the gravitational wave: (i) h+ = h0 sin ω(t−x/c),
h× = 0 ; and (ii) h+ = 0, h× = h0 sin ω(t− x/c).

(c) [7 Marks] Two bodies of equal mass m1 = m2 = m, attracting each other
according to Newton’s law, move in circular orbits around their common centre
of mass with orbital period P . Using the quadrupole formula for the generation
of gravitational waves show that in order of magnitude

h ∼ rg

R

(
rg

cP

)2/3

,

where R is the distance to the system and rg = 2Gm
c2

is the gravitational radius.

B3(a)(book work)

•[3 Marks]
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If gik = ηik + hik, where hik are small, contravariant metric tensor can be written
as gik = ηik + aik, where aik are also small. Taking into account that gikg

kn = δn
i

we have
(ηik + hik)(η

kn + akn) = δn
i ,

δn
i + ηika

kn + hik)η
kn = δn

i ,

ηika
kn = −hikη

kn,

ηimηika
kn = −ηimhikη

kn,

δm
k akn = −ηimηknhik,

amn = −ηmiηnkhik,

or
aik = −ηinηkmhnk.

•[2 Marks]

Writing the Rieman and Ricci tensors in linear approximation we have

Riklm =
1

2

(
∂2him

∂xk∂xl
+

∂2hkl

∂xi∂xm
− ∂2hil

∂xk∂xm
− ∂2hkm

∂xi∂xl

)
,

and

Rik =
1

2
(−ηlm ∂2hik

∂xl∂xm
+ ηlm ∂2him

∂xk∂xl
+ ηlm ∂2hkm

∂xi∂xl
− ηlm ∂2hlm

∂xi∂xk
).

•[1 Mark]

We have four arbitrary functions ξ, thus we can impose on hik four supplementary
conditions:

ηkmhmi,k − 1

2
δk
i η

nmhnm,k = 0,

•[4 Marks]

then

Rik =
1

2

(
−ηlm ∂2hik

∂xl∂xm
+ ηlmhkm,l,i + ηlmhim,l,k − ηlmhlm,k,i

)
=

=
1

2

(
−ηlm ∂2hik

∂xl∂xm
+

1

2
δl
iη

lmhlm,l,k +
1

2
δl
kη

lmhlm,l,i − ηlmhlm,k,i

)
=

=
1

2

(
−ηlm ∂2hik

∂xl∂xm
+ ηlmhkm,l,i + ηlmhim,l,k − ηlmhlm,k,i

)
=

=
1

2

(
−ηlm ∂2hik

∂xl∂xm
+

1

2
δl
iη

lmhlm,l,k +
1

2
δl
kη

lmhlm,l,i − ηlmhlm,k,i

)
=

=
1

2

(
−ηlm ∂2hik

∂xl∂xm
+

1

2
ηlmhlm,i,k +

1

2
ηlmhlm,k,i − ηlmhlm,k,i

)
= −1

2
ηlm ∂2hik

∂xl∂xm
.

B3(b)(seen similar)

16 [This question continues overleaf . . . ]



•[1 Mark]

By transformation of coordinates it is possible to eliminate all components of
hik except transverse components h22 = −h33 = h+ and h23 = h×. The two
independent components h+ and h× are called + and × polarizations.

•[2 Marks]

i)

© © © © ©
t = 0 t = T/4 t = T/2 t = 3T/4 t = T

•[2 Marks]

ii)

© © © © ©
t = 0 t = T/4 t = T/2 t = 3T/4 t = T

B3(c)(unseen )

•[2 Marks]

To an order of magnitude and omitting indices we have

h ∼ G

c4R
D̈ ∼ G

c4R
mr2P−2.

•[2 Marks]

Taking into account that according to Newton low

P−2 ∼ Gmr−3

we have
r ∼ (GmP 2)1/3,

•[3 Marks]

hence

h ∼ Gm

c4RP 2

(
GmP 2

)2/3 ∼ rg

c2RP 2

(
rgc

2P 2
)2/3 ∼ rg

R

(
rg

cP

)2/3

.

17 [End of examination paper.]


