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SECTION A

FEach question carries 8 marks.

1. (a) [5 Marks] A spacecraft moves around a planet of mass m and radius r along a
circular orbit of radius R = 2r. Ignoring the transverse Doppler effect, evaluate
the redshift z of the radio signal emitted by a probe left on the surface of the
planet and received by the spacecraft.

(b) [3 Marks] Another spacecraft of height h moves very far from any gravitating
bodies with acceleration a. Show that the redshift of a photon emitted at the
bottom of the rocket and detected at its top is z = ah/c*. [Hint: First solve the
problem as for part (a) for radii 7 and R = r + h, where h < r; then apply the
equivalence principle.]

A1(a)(seen similar)

¢[2 Marks]
From conservation of energy, neglecting transverse Doppler effect, we have
Gm hl/ob Gm hVem
h ob T T 5 =h em — T 5 .
b TR e g R ¢
¢[1 Mark]|
Thus
Vob o - %
Vem - % ‘
¢[2 Marks]
Taking into account that in Newtonian limit Gm/rc? < 1, we have
Vob ] Gﬂ ( 1 r ) B Gm
Vorn rc? R) 2rc?’
then oM o
Vem Vob Vob r m
: Ve Ve rc? ( R) 2rc?
A1(b)(seen similar)
¢[2 Marks]
fR=r+hand h<r
GM r GM h GMh  gh
z=—5(1- )R (=1 =-=))=—5 =5,
re r+h rc r ric c

where ¢ is free fall acceleration at the surface of gravitating body.
¢[1 Mark]|
According to the equivalence principle

ah

Z=—F.
CQ

2 [Next question overleaf.]



2. (a) [3 Marks| Give the definition of the mixed tensor of the second rank in terms
of the transformation of curvilinear coordinates (you can assume that a mixed
tensor of the second rank is transformed as a product of covariant and contrvariant
vectors).

(b) [5 Marks] In the non-rotating system of Cartesian coordinates (z, y, 2)

0000
. o100
A=10 0 0 0
0000

Using coordinate transformation from Cartesian to the uniformly rotating cylin-
drical coordinates (r, 0, ¢)

r=rcos(0+Qt), y=rsin(@+Q), z=2,
show that in the latter coordinates

, QO
Al = —%C sin 2(6 + Qt).

A2(a)(seen similar)

¢[1 Mark]|
A contravariant vector A’ transforms as
. 0xt

A= 8x’”A E
and this is the only definition of the contravariant vector.
e[1 Mark]|
A covariant vector B; transforms as

8=,
and this is the only definition of the covariant vector.
o[1 Mark]
A mixed tensor C}, transforms as product of A* and B:
and this is the definition of the mixed tensor of the second rank.
A2(b)(unseen)
¢[2 Marks]

, oz’ Ha™ or Ox
1 _ n _ 2 77
Ay = oxn Ox0 A ox cOT’
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3.

o[1 Mark]

taking into account that

r=/x%+ 2, g; = % = cos[2(6 + Qt)],

Or _0x _ Sy
cOT ¢t ¢’

and

¢[2 Marks]
we have thus 0O 0
Al = Y cos(0 + Q) = —g— sin2(0 4 Qt).
c c

(a) [4 Marks] Using the formulae for the Cristoffel symbol and covariant derivatives
given in the rubric or otherwise, show that covariant derivatives of contrvariant
metric tensor are equal to zero, g%, = 0.

(b) [4 Marks] Using the Einstein Equations show that in empty space-time

An;n;l = An;l;n
for an arbitrary covariant vector A;.
A3(a)(seen similar)
o[1 Mark]
The relation

DA' = ¢*DA,

is valid for covariant differential as for any vector.
¢[2 Marks]
On other hand
DA’ = D(¢"™ Ay) = g™ DA + AcDg™,
thus
g*DA, = ¢ DA, + ADg™*.

Taking into account that A’ is arbitrary vector we have

o[1 Mark]
Dg* = gfffd;z:” =0

for arbitrary dx™. Hence
gk =0.

A3(b)(unseen )

¢[2 Marks]
From the definition of the Riemann tensor

A;k;l - A;l;k’ =—-A Rmkl?

4 [This question continues overleaf . .. ]



by summation ¢ = k = n we have

= =-—-A"R}

n;l ln

AmRmb

mnl —

where R,,; is the Ricci tensor.
¢[2 Marks]

According to the Einstein equations in empty space-time, i.e when stress-energy
tensor vanishes, T, = 0, the Ricci tensor is also vanishes, hence
n _ n

U

[3 Marks| A gravitational field is described by the interval
ds? = t277ikdxidxk.

Show that all non vanishing components of the Cristophel symbol can be repre-
sented in the following form

1 ,
i Wnk, where %, = 6251 + 000" — O4Mkn-

[5 Marks| Show that the scalar curvature R of the above field is equal to zero.
A4(a)
¢[1 Mark]| (unseen)

gix = t°mi, hence g% =17y,
¢[2 Marks]

% 1 mn
km — 9 (gkn,m + Imnk — gkm,n) =

2 (80 2N+ Of) 20, — 60, - 2Ny =

27277
L o | <05 0
:E((Snék_l_éké — 00N ™ ) =

1 7
7 Tnk-

1 ) ) )
— (00} + 000}, = Fha) =

A4 (b)(unseen )
¢[2 Marks]

R=g"Ry =t 20k(_5?t37£k +512t37£l + ﬁ%;k%m — @i Vo) =

=t7'Q, where Q = —n"v% + 0 + 0" Vv — 1V Vem =
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o[2 Marks]
= =" + b+ 17 (0769, 4 OS] — Srmgnm)—
—0* Y (810, + 08,0 — SloThm) =
= 2p"*~0 L= 6100 4 6160 — 6 (5969 4- 6969 — 6
= 21" Yk T Yor = 0100 + 000; oot + 20" (05 05 + ;0 onzk)
o[1 Mark]
44+1-1+4+2(2-4)=0.

(a) [5 Marks| Using the Einstein equations, the Bianchi identity and the symmetry
properties of the Riemann tensor, show that covariant divergence of the stress-
energy tensor is equal to zero.

(b) [2 Marks] Take the stress-energy tensor in the form

e 0 0 0
o —p 0 o0

H=lo 0o = o |
0 0 0 —p

where ¢ is energy density and p is pressure (if p > 0) or tension (if p < 0). Using
the Einstein equations, evaluate the scalar curvature in terms of ¢ and p.

Ab5(a)(seen similar)

o[1 Mark]
Contracting the Bianchi identity on the pairs of indices ¢k and In

glk( ikn;m + Rzmkn + Rznm k:) O’

and taking into account that covariant derivatives of the metric tensor are equal
to zero we have

¢[2 Marks]

[ ZkRzkn] [ ZkRzmk] [ ZkRTL ] = 07

mm

¢[2 Marks]

using symmetry properties and the definition of the Ricci tensor and the scalar
curvature we have

[ ZkRmk] [ lkRzmk] [ lkRn

'mm] 07
—Ry+ Ry, + R =0

hence

)

1
o[1 Mark]
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Putting this into the Einstein Equations we have

4

i ¢ i L _
Tk;i - %( ki i(skRﬂ) =0.
A5(b)(unseen )
¢[2 Marks]
Contracting the Einstein equations we have
1 8rG 8rG 8rG
R — §4R = CTT, hence R = — i T= —7(8 —3p)

[3 Marks] The four-velocity and the four-momentum of a particle of mass m in

a gravitational field are defined as

i

;  dx i i

u :dij p = mcu.
s

Show that uu’ = 1 and p;p’ = m?c2.

[65 Marks| Show that in a static gravitational field with metric interval
ds® = goo(dz®)? + gapdz®da®,
the energy of the particle, E = mc?ug, is given by

2
me=/900

cy/ —gapdredz?®
Voodz®

E =

where

v =

A6(a)(seen similar)

¢[2 Marks]
Starting from formula for the interval

ds? = gpdaida®,

and dividing both side of this equation by ds? we have

1 da® da® . .
Yik ds ds Gik
¢[1 Mark]|
1 , A
= —5pip’, hence p;p' = m2c?.
m2c

wu' =1 and p;p’ = m2c?.
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7.

A6(b)(seen similar)

o[1 Mark]
d 0
E = mc*uy = m02900UO = 7710290061i =
s
¢[2 Marks]
e’ dx®
\/900(d$0)2 + Japdrdz?
¢[2 Marks]

introducing then the velocity

v =

cy/ —Gapdr®dz?’
\/goodﬂcO 7

we have

mc? goo

J1—2

(a) [4 Marks] Using the Kerr metric, find the location of the event horizon, 7,,,, and

the limit of stationarity, 5. Compare these results with the case of a non-rotating
black hole.

E =

(b) [4 Marks| Show that the circle defined by r = rp,, and 0 = 7/2, is the world line
of a photon moving around the rotating black hole with angular velocity

A7(a)(seen similar)
¢[2 Marks]

The location of horizon: g;; = oo, hence
A:rz—rgr—l—aZ:O,

The larger solution is outer horizon:

2
T T
Thor:?q"’ ( g) — a2

rhorgég'f_izrm

ifa=0,7r4, =71
¢[2 Marks]

g-
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The location of the limit of stationarity is the surface goo = 0. For the Kerr metric

goo = 0 gives

e
— 4 =,
2

thus

r? —r,r 4+ a*cos? 0 = 0,

1 r r
— = 2 _4a2cos2p) = 4 29Y2 _ 42 cog2
T—Q(Tgi\/rg 4a? cos 9)—2:|:\/(2) a? cos? 6.

“+7” corresponds to the outer surface goo = 0 and we should take this solution.

A7(b)(unseen )

e[1 Mark]|

As A =0 we have 17, + a® = 1yThor
¢[3 Mars]

For d — Qpopdt

ds? 2
G R —(r,zw,,+a2+r‘qa Q3+ 9 =

2 112 hor
cAdt Thor Thor Thor
2
r TeQ 2r,a
g g 2 9 _
=1- - (rgrhm’ + )Qhor QhOT -
Thor Thor Thor
r r 2r,a
o g g (.2 g _
=1- - (rhor )Qhar Qhor =
Thor Thor Thor
T 2r,a
_ g 202 g _
=1- - Qhor Qhor -
Thor Thor
r a 2r,a  a
-1— 9 7,3( 2 + g _
Thor 7ngrhor Thor Tgrhor
2
Tq a a? r2, - TgThor + a? A
—1- % 4o = = =0.
T 7’2 7’2 T2 T2
hor hor hor hor hor

Hence r = 7y, and ¢ = .t correspond to the world-line of photon.
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SECTION B

Each question carries 22 marks.

1. (a) [4 Marks] Consider the motion of a particle in the equatorial plane (§ = 7) of the

spherically symmetric Schwarzshild gravitational field. Given that the solution of
the Hamilton-Jacobi equation can be written in the following form

S =—-Et+ Lo+ S.(r),
2

where the constants £ = mc°ug and L = mcus are the energy and angular
momentum of the particle, find a differential equation for .S,.

(b) [7 Marks] Show that

g *ldr_ 5 5
B(1-") =P Uy

where Uy is the “effective potential energy” is given by

Uygglr) = mC2J (1-%) (1 + mi;)

(c) [11 Marks] Explain why the condition E' > U,g(r) determines the admissible
range of the motion. Solve the simultaneous equations U,g(r) = E and U(; (r) =
0 to show that the radius of the stable circular orbit with angular momentum L
is

3m202r§
1414/1— 72

L2

2,2
mAcery

r =

Evaluate the radius of the innermost stable circular orbit.
B1(a)(seen similar)

¢[2 Marks]
Taking 6 = 7/2 we can write down the Hamilton-Jacobi equation in the Schwarzschild
metric as
e\ (95 ) (0SY* 1 (95
1—9) — —(1—9> — -S| —m*ZF=0.
( r <c@t> r or r2 \ 0¢ e
¢[2 Marks]

Then putting S = —Et + Lo + S,.(r), we have

2
ry\ "t E? < 7“9> ds, L? 5 o
Sl 2 (o) () = o=
( r ) c? r dr iz e ’
which is the usual differential equation for S, (r).
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B1(b)(seen similar)
o[2 Marks]

The radial component of the four-momentum can be found as

oS  dS, dr E? 7o\ 2 L? 7o\ !
= :p1:911p1:911dS:J< —9) —<m202+2>(1—g)

or  dr
Sy e (1 2V (o)
1 r m2c2r? r
0[1 Mark]

On other hand

¢[2 Marks]
Thus

dr % 1 g 5 1 1 rg\ 1 5 5
i U= () VU

h T r
¢[2 Marks]
where
L2 r
2 g
Ueft = me J <1 + m2027"2> ( B T‘>7
hence

B1(c)(seen similar)

o[1 Mark](book work)

For given radius Ugg is equal to the energy of a particle which has the turning
point for this 7, i.e. dr/dt = 0, thus the condition E' > U, determines the
admissible range of the motion.

o[1 Mark]|(book work)

All circular orbits are determined by simultaneous solution of the equations

AUt _
r

Ueff = F and 0.

o[1 Mark](seen similar)
From dUgg/dr = 0 we have dUZg/du = 0, where u = 1/r.
o[2 Marks]
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Hence

L22 2L2 L 2 L 2
—rg<1—|— u>+(1—rgu)u:O, or rg7°2+37"g<) —2() r=0.

m2c? m2c? mc

¢[2 Marks]
Solving this equation we have

L2 L2 \> 312 L2 3r2m2c2
ry = ——5— =k — | = = 1+4/1——2—].
m2c?r, m2ctry m2ct  mic?r, L2

o[1 Mark]
The larger root corresponds to the stable orbit.
o[1 Mark]
One can see that

3rim*c?
¢[2 Marks]
Hence

—\/gmcrg <L< \/gmcrg.

Substituting L = \/§mcrg into equation for the radius of circular orbits, we have
for the radius of the innermost stable orbit 75, = 3r,.

[5 Marks] Using the equation ds = 0 with 6, ¢ = const, consider the propagation
of radial light signals in the Schwarzschild space-time. Consider a photon emitted
outward from r = ry at time t = 0. Show that the world-line of the photon is

given by
r—rg

ct=r—ro+r,ln )
o — 7’9

[10 Marks| A particle moves along a radial geodesic in the Schwarzschild metric.
Using the expression for ds and an appropriate component of geodesic equation,
show that if the particle starts to fall freely from infinity, then

2/3

r(r) = [P () = Sert(r —m)]

where 7 is the proper time (ds = cdr).

[7 Marks| A free-falling observer moves radially with zero velocity at infinity
in the gravitational field of Schwarzschild black hole. When it passes the radius
ro > 14 he starts to send outward radio-pulses with constant rate. The very small
time interval between two subsequent pulses measured by clocks of the observer
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is equal to A7 < ry/c < r/c. The second observer resting very far from the
black hole receives signals sent by the first observer. Show that the time interval
between the (n + 1) and the n'* pulse depends on n according to

AT
1— /=’

Tn

At, =

where 7, is the radius at which the n* pulse is emitted.
B2(a)(seen similar)

o[1 Mark]
From ds = 0 for 6, ¢ = const, we have

21— 92 — (1- 9)lar2 =
¢ ( r ) ( r ) r )
¢[2 Marks]

hence

et = (1= "2) e = r(r — 1)) e = [ rlr = 1)) =
T

= /(r —rg+ry)(r—r,) tdr = (r—r,) +ryln(r —ry) + C.

¢[2 Marks]
If at t =0 r =1y, then

C = —[(ro —ry) + g In(ro — r,)],

and finally
r—rg

TO—’I“g

ct=1r—r9g+7ryln

B2(b)(seen similar)
¢[2 Marks]

A particle moves along radial geodesic in the Schwarzschild metric, then

cd?t dt dt dr dr

PN F8002(£)2 + 2F81C%% + F%(@)z = 0.
o[1 Mark]
T = ;900(900,0 + goo.0 — Joo) = 0,
o[1 Mark]
F81 = ;900(900,1‘1'910,0—901,0) = ;9006320 = ;(1—?)_161(;70;,) = 2%92(1—%)_17
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¢[2 Marks]
1
I = 5900(910,1 + 9101 — g110) =0,

so we have P it d
@ Toq ey dtar
d52++r2( r) dsds
or
dt dt rg._1dt d Tq Tg\_qdt dt Tq
e SRR Ry § W A R T el A
ds(ds)+( 7’> dsds( 7’) ( 7’) ds[ds( T)] ’
hence @t
”
—(1-4) =cC.
ds( r )
o[1 Mark]
At infinity % = ¢!, hence C' = ¢7'.
¢[2 Marks]
Substituting this into eq. for ds, we have
r r r dr
1= (1= “9D)e2(1 — 29V 2,72 _ (1 — 9y 1(Z)2
(-0 -2 o= I (D,
e g (e T
ro (ds):(dT)_ Vo
we take 7 —" for falling objects, then
2
§r3/2(7') — 3% () = —CT;/2<T — 7o),
¢[1 Mark]|
and finally
r(r) = [7“3/2(70) — 207“;/2(7' — To)]2/3.
B2(c)(unseen)
e[1 Mark]|

At, = Aty + Aty

where Aty is the time spent by the first observer to travel between r,, and r, 1,
and At, is the time spent by the n'* pulse to travel between 7, and r,,.
¢[2 Marks]

Ty

Atl = AT( — *)_1,

r

¢[2 Marks]
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T r r
At—fA 9y—1 Toar(1 = 1oyt

2 r(1— 7‘) . 7( 7”) 7
¢[2 Marks]
hence

Atn:AT —g \/7A l (1+ —Q)AT( _7;9)71’

T’ r r r

hence A
At, = — =1
1 T

[10 Marks] A weak gravitational wave is a small perturbation of the Minkovski
metric, gix = Nk + hix. Show that g% = n* — pmp*™h, ... Use a linear coordinate
transformation

=i g
where £ are small functions of 2%, to impose on h;;, the following four supplemen-
tary conditions

1
Show that after such transformation the Ricci tensor is reduced to

1 0%his
RZ’ - — = im ! .
k 277 oxloxm

[5 Marks] Consider a ring of test particles initially at rest in the (y, z)-plane, per-
turbed by a plane monochromatic gravitational wave propagating in z-direction
with frequency w and amplitude hg. Explain what is meant by “4+” and “x” polar-
izations. Sketch the shape of the ring at x = 0 and at times ¢ = 0, o, Z,Qw and ¢
for two different polarizations of the gravitational wave: (i) hy = hgsinw(t—x/ c)
hy =0 ;and (ii) hy =0, hx = hosinw(t — z/c).

[7 Marks] Two bodies of equal mass m; = my = m, attracting each other
according to Newton’s law, move in circular orbits around their common centre
of mass with orbital period P. Using the quadrupole formula for the generation
of gravitational waves show that in order of magnitude

Ty [ To \2/3
v~ (25)
R \cP ’

2Gm

where R is the distance to the system and r, =
B3(a)(book work)
¢[3 Marks]
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If gir. = Mir + hi, where h;, are small, contravariant metric tensor can be written
as g% = n"* + a* where a’* are also small. Taking into account that g;.g"" = o7
we have

(M + i) (0" + a*™) = 67,

O + N a®™ + hg)n*™ = 87,

Nika’™ = —hign™",
N naa™ = =0 by,
Gira*™ = =" iy,
™" = ="
or
a* = _pinpkmp,
¢[2 Marks]

Writing the Rieman and Ricci tensors in linear approximation we have

R 1 0%him N 0%hyy B 0%h; B 0?him,
wm = \ 9zkorl T 9zioxm™  Oxkdxm  Oridxl )’
and 1 i %Rk i %I i 0N i 02y
Ri — (_pim i m im m . m Im k m .
K 2( " 8xlaxm+n 8xk8xl+n oxtox " 83718:6’?)
o[1 Mark]

We have four arbitrary functions &, thus we can impose on h;; four supplementary
conditions:
n mik 5 i N nm,k — 07

e[4 Marks]
then

R, = ! —n" Gl 0 e i+ 0" P = 0" P | =
) 2 axlaxm m,l,e wm,l, m,k,i

- ; <_nlm aijg;km + ;ﬂﬁlmhzm,z,k + ;5,lﬁnlmhlm,l,i - nlmhlm7k7i> -
- ; <_ " 8(?;(2?”1 + 0" him i+ 1" i — nlmhlm,k,z) =
- ; (‘”lm 3?;:;; + ;5§n’mhlm,l,k - ;ainlmhlm,l,i — nlmhlm?kﬂ.) —
- ; <_ " aijg:m + ;nlmhlm,z’,k + ;nlmhlm,k,i - nlmhlm7k7i> = —;nlm aijg;“m

B3(b)(seen similar)
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o[1 Mark]

By transformation of coordinates it is possible to eliminate all components of
h;i except transverse components hoy = —hgs = hy and hey = hy. The two
independent components h, and hy are called + and x polarizations.

¢[2 Marks]

O 0000

t=0 t=T/4 t=T/2 t=3T/4 t=T

¢[2 Marks]

i

t=0 t=T/4 t=T/2 t=3T/4 t=T

BB(C)(unseen )

¢[2 Marks]

To an order of magnitude and omitting indices we have
G . G,

¢[2 Marks]

Taking into account that according to Newton low
P2~ Gmr

we have
r ~ (GmP*)'/3,

¢[3 Marks]

hence

17 [End of examination paper.]



