
Chapter 5

The Equivalence Principle

There was a minute’s pause perhaps. The Psychologist seemed about to speak to me, but changed his
mind. Then the Time Traveller put forth his finger towards the lever. ‘No,’ he said suddenly. ‘Lend me
your hand.’ And turning to the Psychologist, he took that individual’s hand in his own and told him to
put out his forefinger. So that it was the Psychologist himself who sent forth the model Time Machine on
its interminable voyage. We all saw the lever turn. I am absolutely certain there was no trickery. There
was a breath of wind, and the lamp flame jumped.

5.1 Inertial mass

“Gravitational mass is equivalent to inertial mass.”

Newton’s second law states that the force on an object is proportional to mass times
acceleration. In this section, we will call the mass which appears in this law the inertial
mass: −→

F = mI
−→a . (5.1)

for example, consider the electro-static interaction between two particles with masses
m1,m2, and charges q1, q2. Particle 2 feels a force

−→
F 2 =

q1q2
r2
12

r̂12. (5.2)

The acceleration felt by particle 2 can then be found by combining these two equations:

−→a 2 =

(
q2
m2 I

)
q1
r2
12

r̂12. (5.3)

Thus, −→a 2 depends on the ratio of charge to inertial mass, q2/m2 I .
Next, consider a particle falling to the ground. The Newtonian gravitational force

resembles the electrostatic force (both are inverse square laws), with masses replacing
electrical charges. We will simply call the gravitational charge m. Let M⊕ be the mass
of the Earth, r the distance to the centre of the Earth, and r̂ the upwards unit vector.
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5.2 Free Fall 63

Then the force on an apple falling to the ground can be written

−→
F = −CM⊕m

r2
r̂, (5.4)

where C is a constant.

Now, by Newton’s 2nd law

−→
F = mI

−→a (5.5)

=⇒ −→a =

(
m

mI

)(
−CM⊕

r2

)
r̂. (5.6)

Thus, −→a depends on the ratio of gravitational mass to inertial mass, m/mI . Galileo’s
experiments −→a should be the same for all materials, once air resistance is neglected. This
implies that m/mI is the same constant for all matter.

Thus, we can combine the two constants C and m/mI into a single constant

G = C

(
m

mI

)
(5.7)

=⇒ −→a = −GM⊕

r2
r̂. (5.8)

We now see a fundamental difference between the electrical force and the gravitational
force: the former depends on a charge-to-inertial-mass ratio, but the latter does not. The
inertial forces (also known as fictitious forces) are similar to gravity in this respect – the
acceleration has no dependence on mass.

5.2 Free Fall

Einstein had difficulty incorporating both gravity and inertial forces into special relativity.
His great insight was to treat them together, using the principle of equivalence to eliminate
the dependence on mass. Now, inertial forces can be eliminated by transferring to a non-
accelerating frame. Einstein reasoned that gravitational forces can be removed in a similar
way by transferring to a free-fall frame.

Example: Consider an object in the Earth’s gravitational field near r = R⊕. Let z be
the vertical direction.

d2z

dt2
= −g

g =
GM⊕

R⊕

≈ 10ms−1
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initial conditions:

z0 = z(t = 0) = h

ż0 = V0

=⇒ ż(t) = −gt+ V0

z(t) = h− 1

2
gt2 + V0t

Let’s transform to new co-ordinates:

ξ(z, t) = z +
1

2
gt2

Then:

ξ = h+ V0t

ξ̇ = V0 = constant

ξ̈ = 0

Since the acceleration is zero, there is no gravitational force.

5.2.1 Locally Inertial Frames

noindentDefinition Locally Inertial Frame (LIF) An LIF is a reference frame with origin
at space-time event P . An object at P is in free-fall (if there are no external forces). Near
P , there are no gravitational forces, and special relativity holds.

In an LIF

a.

gab

∣∣∣
P

= ηab, (5.9)

b.

∂cgab

∣∣∣
P

= 0. (5.10)

for all a, b, c. The second condition follows from the isotropy of space-time.

5.3 Geodesics

noindentDefinition Geodesic

a. A geodesic is a path on a manifold M which is an extremum of length (i.e. max or
min distance between two points).

b. A geodesic is a path which has zero covariant acceleration (to be defined later).
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5.3.1 Examples

a. R2. Geodesics are straight lines.

b. S2. Geodesics are the great circles, for example the equator.

c. Minkowski Space M4.

In special relativity, “distance” becomes proper time, τ

dτ 2 = ds2 = dt2 − dx2 − dy2 − dz2
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Path 1:

τ1 =

∫
dτ =

∫
dt = ∆t. (5.11)

Path 2:

τ2 =

∫ √
dt2 − dx2 − dy2 − dz2 (5.12)

<

∫ √
dt2 = ∆t. (5.13)

Thus, τ1 > τ2. An object at rest has maximum proper time (and follows a geodesic
in space-time).

5.3.2 The Geodesic Equation

In general relativity, the orbit of a satellite is a geodesic in a space-time distorted by the
mass of the Earth. How can we find the orbit? We seek an expression for the acceleration
of the satellite in ordinary coordinates fixed to the Earth. In the locally inertial (free-fall)
frame, of course, the acceleration is easy: it is zero!

Let (ξ0, ξ1, ξ2, ξ3) be coordinates in the satellite’s LIF, while X are coordinates fixed
to the Earth. In other words, near the spacetime event (ξ0, ξ1, ξ2, ξ3) = (0, 0, 0, 0), the
satellite is at rest in the LIF coordinates, and experiences no forces and no acceleration:
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Ua
LIF =

dξa

dτ
=


1
0
0
0

 ; (5.14)

dUa
LIF

dτ
=

d2ξa

dτ 2
= 0. (5.15)

Let U be the 4-velocity in Earth coordinates X. We now transform ULIF to U:

0 =
d

dτ
Ud

LIF =
d

dτ

(
∂ξd

∂Xb
U b

)
(5.16)

=

(
d

dτ

∂ξd

∂Xb

)
U b +

∂ξd

∂Xb

d

dτ
U b (5.17)

by the product rule. To understand the first term, we use the fact that

d

dτ
=

dt

dτ

∂

∂t
+
dx

dτ

∂

∂x
+ . . . (5.18)

= U0∂0 + U1∂1 + . . . (5.19)

= U c∂c (5.20)

to obtain

0 = U b

(
U c∂c

∂ξd

∂Xb

)
+
∂ξd

∂Xb

d

dτ
U b (5.21)

= U bU c ∂2ξd

∂Xb∂Xc
+
∂ξd

∂Xb

d

dτ
U b. (5.22)

The last term contains what we are searching for: the acceleration in the Earth frame
dU b/ dτ . However, we need to free this expression from the transformation matrix
∂ξd/∂Xb. To rid ourselves of this unwanted matrix, we multiply by its inverse ∂Xa/∂ξd:

∂Xa

∂ξd

∂ξd

∂Xb
= δa

b. (5.23)

This gives

0 =
∂Xa

∂ξd

(
U bU c ∂

2ξd

∂XbXc
+
∂ξd

∂Xb

d

dτ
U b

)
(5.24)

=
∂Xa

∂ξd

∂2ξd

∂Xb∂Xc
U bU c + δa

b
d

dτ
U b. (5.25)

Now, δa
b dU b/ dτ = dUa/ dτ . Rearranging terms, we finally obtain

dUa

dτ
+
∂Xa

∂ξd

∂2ξd

∂Xb∂Xc
U bU c = 0 . (5.26)
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Equation (5.26) can be written in the form

dUa

dτ
+ Γa

bcU
bU c = 0, (5.27)

where the Christoffel symbols Γa
bc are given by

Γa
bc =

∂Xa

∂ξd

∂2ξd

∂Xb∂Xc
. (5.28)

Equation (5.26) is called the geodesic equation, and governs the motion of matter in
the absence of forces. A more useful formula for the Christoffel symbols will be derived in
the exercise below, and (in a different way) in the next chapter. Equation (5.26) has been
introduced here because of its physical meaning. It computes the apparent acceleration
dUa/ dτ of an object in one frame (X) in terms of transformations from the LIF. We

experience gravitational forces only because we insist on viewing things from a non-inertial
frame! Like any other fictitious or inertial force, gravitation arises from the acceleration
of one frame of reference with respect to the inertial frames. We do feel the effects of
weight, particularly after a long hike uphill, but we can now view this as the effect of
forces coming from the ground under our feet, accelerating us away from our natural
state – free-fall.

Exercise 5.1 Here we derive an expression for the Christoffel symbols in terms of
the metric. To simplify the notation, gab will denote the metric in the non-inertial frame,
gLab the metric in the LIF, and ∂a ≡ ∂/∂Xa (i.e. the shorthand for partial derivatives
applies only to the noninertial X frame).

a. Show that
∂cgab =

[
(∂c∂aξ

f )(∂bξ
g) + (∂aξ

f )(∂c∂bξ
g)
]
gLfg. (5.29)

b. Show that
Γabc = gaeΓ

e
bc = (∂aξ

f )(∂b∂cξ
g)gLfg. (5.30)

c. Show that
Γabc + Γacb = 2∂cgab. (5.31)

d. Hence show that

Γa
bc =

1

2
gad (∂bgcd + ∂cgdb − ∂dgbc) . (5.32)

5.3.3 Covariant Acceleration

Theorem. If the components of a tensor vanish in one co-ordinate system, then they
vanish in all frames.

Proof. This follows directly from the transformation laws for a tensor. For example,
if in frame A we have Mab

A = 0 for all a, b, then in frame B

M cd
B =

∂Bc

∂Aa

∂Bd

∂Ab
(0)ab = 0. (5.33)
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Note that the acceleration term dUa/dτ is zero in the LIF, but non-zero in the Earth
frame. Thus it is not a tensor! To understand the motion of objects in general relativity
further, we must learn how to differentiate vectors in a covariant way (i.e. so that the
result is a tensor).

A vector U involves not only its components Ua, but also the basis vectors of the
coordinate system. If space-time is warped, or even if we are simply using non-Cartesian
coordinates, these basis vectors will point in different directions at different points. In
the next chapter, we will show how to differentiate vectors by including both components
and basis vectors.



Chapter 6

Covariant Derivatives

One of the candles on the mantel was blown out, and the little machine suddenly swung round, became
indistinct, was seen as a ghost for a second perhaps, as an eddy of faintly glittering brass and ivory; and
it was gone–vanished! Save for the lamp the table was bare.

How do we differentiate vectors (& tensors)?
There are many examples in physics where derivatives need to be extended. For

example, in fluid mechanics the Navier-Stokes force equation reads

D
−→
V

Dt
= ∇p+ ν∇2−→V (6.1)

where D/Dt is the total Lagrangian derivative

D/Dt = ∂/∂t+
−→
V · ∇. (6.2)

In Quantum mechanics, Schrödinger’s equation has the form(
1

2m

(
~
i
∇
)2

+ V

)
ψ = Eψ. (6.3)

With an applied magnetic field the gradient ∇ is replaced by the ‘gauge covariant deriva-

tive’ ∇− ie
m

−→
A, where ∇×

−→
A =

−→
B . In this context the vector potential

−→
A is sometimes

called the ‘electromagnetic connection’.

6.1 Non-Euclidean Geometry

Basis Vectors A Co-ordinate Line is a line parameterized by one of the co-ordinates. A
basis vector is a tangent vector to a co-ordinate line. Let eOa be the basis vector tangent
to the co-ordinate line following xa .

Note A circled subscript appears because the subscript chooses between the vectors
in a set – e.g. the set {eO0 , eO1 , eO2 , eO3 } – ordinary subscripts choose the component of a
single vector.
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70 Covariant Derivatives

Thus, in component form (for co-ordinates X)

eO1 =


dX0/X1

dX1/X1

dX2/X1

dX3/X1

 =


0
1
0
0

 (6.4)

=⇒ eO1
0 = 0, eO1

1 = 1, . . . (6.5)

or eO1
a = δa

1 (6.6)

In general,

eOc
a = δa

c . (6.7)

Note that the basis vectors need not be orthogonal or of unit size:

eOb · eOc = gadeOb
aeOc

d (6.8)

= gadδ
a
b δ

d
c (6.9)

= gbc (6.10)

i.e. the scalar product of basis vectors eOb and eOc is equal to element gbc of the metric.
All vectors can be written as sums of basis vectors:

V =


V0

V1

V2

V3

 = V ceOc . (6.11)
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6.2 The Covariant Derivative

Derivatives must satisfy the product rule. Thus for the derivative in the Xb direction

∇bV = ∇b

(
V ceOc

)
= (∇bV

c) eOc + V c(∇beOc ). (6.12)

V c is a number at each point (i.e. a function of position), so we can write

(∇bV
c) = ∂bV

c =
∂V c

∂Xb
(6.13)

=⇒
(
∇bV

)
= (∂bV

c) eOc + V c
(
∇beOc

)
. (6.14)

We need to define the last term in brackets. The object ∇beOc is itself a vector. We
will name its components with the capital Greek letter Γ:

∇beOc =


Γ0

bc

Γ1
bc

Γ2
bc

Γ3
bc

 . (6.15)

In terms of the basis vectors,

∇beOc = Γ0
bceO0 + Γ1

bceO1 + Γ2
bceO2 + Γ3

bceO3 , (6.16)

or

∇beOc = Γa
bceOa . (6.17)

The object Γa
bc is called a metric connection, or alternatively a Christoffel symbol.

Let us go back to calculating the gradient of a vector:

∇bV = (∂bV
c) eOc + V c

(
∇beOc

)
(6.18)

= (∂bV
c) eOc + V c

(
Γa

bceOa
)
. (6.19)

Exchange a↔ c in the 1st term on the RHS:

=⇒ ∇bV = (∂bV
a) eOa + V cΓa

bceOa (6.20)

= (∂bV
a + V cΓa

bc) eOa . (6.21)

This is a vector, with components(
∇bV

)a
= (∂bV

a + Γa
bcV

c)

To recap: The covariant derivative, ∇b (derivatives in Xb direction)

a. Produces tensors.

b. Obeys the product rule.

c. For a scalar function f ,

∇bf = ∂bf =
∂f

∂Xb
. (6.22)

d. There exists a set of numbers Γa
bc, where(

∇bV
)a

= ∂bV
a + Γa

bcV
c.
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6.3 Derivatives of Other Tensors

Use the properties listed above.
Example: Given a 2nd rank tensor, Mcd, find (∇bM)cd.

To do this, let V c,W d be arbitrary vectors. Let f = McdV
cW d be a scalar function.

By the product rule for ∂b,

∂bf = (∂bMcd)V
cW d +Mcd (∂bV

c)W d +McdV
c
(
∂bW

d
)
. (6.23)

Also by the product rule for ∇b,

∇bf = (∇bM)cd V
cW d +Mcd

(
∇bV

)c
W d +McdV

c
(
∇bW

)d
. (6.24)

Meanwhile,∇bf = ∂bf , so

(∇bM)cd V
cW d = (∂bMcd)V

cW d +Mcd

(
∂bV

c −
(
∇bV

)c)
W d

+McdV
c
(
∂bW

d −
(
∇bW

)d)
.

Now apply rule(4):

(∇bM)cd V
cW d = (∂bMcd)V

cW d +Mcd

[
(−Γc

baV
a)W d + V c

(
−Γd

baW
a
)]
. (6.25)

Next we factor out V and W . To do this, we swap a↔ c in the second to last term, and
a↔ d in the last term:

(∇bM)cd V
cW d = (∂bMcd)V

cW d − (Γa
bcMad + Γa

bdMca)V
cW d. (6.26)

As the above is true for any values of V c and W d we can cancel V cW d from both sides,
with the final result

(∇bM)cd = ∂bMcd − Γa
bcMad − Γa

bdMca . (6.27)

In general, we will obtain one Γ for each index of a tensor, with a minus sign for each
subscript (form) index and a plus sign for each superscript (vector) index.

Exercise 6.1 The covariant derivative ∇b of a vector field Xa is

∇bX
a = ∂bX

a + Γa
bcX

c. (6.28)

Also, the covariant derivative of a scalar is the same as the partial derivative:

∇af = ∂af. (6.29)

Use these equations to find an expression for the covariant derivative ∇b of a form Wc,
i.e. find ∇bWc.

Exercise 6.2 In general Relativity, the relation between the Faraday tensor and the
vector potential φa is defined by

Fab = (∇bφ)a − (∇aφ)b. (6.30)

Write out the right hand side in terms of Christoffel symbols. Show that the Christoffel
terms cancel, leaving

Fab = (∂bφ)a − (∂aφ)b. (6.31)
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Theorem: Suppose the ∇ operator (covariant derivative) satisfies

a.
∇g = 0 (g = metric) (6.32)

b.
Γa

bc = Γa
cb (“zero torsion”) (6.33)

then the Christoffel symbols are determined by

Γa
bc =

1

2
gad (∂bgcd + ∂cgdb − ∂dgbc) . (6.34)

Proof: gcd is a 2nd order tensor with two lower indices, so

(∇bg)cd = ∂bgcd − Γa
bcgad − Γa

bdgca. (6.35)

Define
Γdbc ≡ gadΓ

a
bc. (6.36)

Then

(∇bg)cd = ∂bgcd − Γdbc − Γcbd (6.37)

= 0 (6.38)

=⇒ ∂bgcd = Γdbc + Γcbd. (6.39)

Next apply assumption 2: Γcdb = Γcbd, so

∂bgcd = Γdbc + Γcdb. (6.40)

Obtain two more equations by cycling b→ c, c→ d, and d→ b:

=⇒ ∂cgdb = Γbcd + Γdbc (6.41)

∂dgbc = Γcdb + Γbcd. (6.42)

Take the sum (equation (6.40) + equation (6.41) - equation (6.42)):

∂bgcd + ∂cgdb − ∂dgbc = 2Γdbc + 0 + 0 (6.43)

=⇒ Γdbc =
1

2
(∂bgcd + ∂cgdb − ∂dgbc) . (6.44)

Finally, use gdb = gbd in the second to last term and let

Γa
bc = gadΓdbc (6.45)

to prove the theorem.

Exercise 6.3 Consider a sphere of radius 1 as a 2-dimensional manifold with coordi-
nates X1 = θ (colatitude) and X2 = φ (longitude). What is the metric gab and its inverse
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gbc? Find the Christoffel symbols Γa
bc(there are 8 of these for a 2-dimensional manifold).

Suppose a geodesic on the sphere is parameterized by λ. Use the geodesic equation

d2Xa

dλ2
+ Γa

bc
dXb

dλ

dXc

dλ
= 0 (6.46)

to find d2θ
dλ2 and d2θ

dλ2 .

6.3.1 The gradient of the metric in General Relativity

For an object in free-fall (no external forces) the geodesic equation gives

dUa

dτ
+ Γa

bcU
bU c = 0. (6.47)

This is true in all coordinate frames. But in the LIF the object will appear to be at
rest (or in uniform motion). Thus the components of U in the LIF remain constant, i.e.
dUa/ dτ = 0. This implies that

Γa
bcU

bU c = 0 in LIF. (6.48)

Since this holds for arbitrary 4-velocities U, we must have the Christoffel symbols van-
ishing,

Γa
bc = 0 in LIF. (6.49)

(Strictly speaking, only the part of Γa
bc symmetric in the lower indices b and c need

vanish. Einstein’s theory employs the simplest assumption, that the antisymmetric part
of Γa

bc – called the torsion – is always zero. Some modified theories of gravity include a
non-zero torsion.)

Now,

(∇cg)ab = ∂cgab − Γd
cagdb − Γd

cbgad. (6.50)

In the LIF, however, Γd
ca = Γd

cb = 0. Also, by the definition of locally inertial frames,
∂cgab = 0. Thus

∇g = 0. (6.51)

And, since ∇g is a tensor, it must vanish in all frames. Thus in General Relativity
equation (6.34) can be used to calculate the Christoffel symbols.

6.4 Covariant Directional Derivatives and Acceleration

Consider a curve γ parameterized by λ whose tangent vector is V (see section 1.5.1). For
a function f , the derivative in the direction along the curve is (Recall equation (1.76)):

df

dλ
= V · ∇f (6.52)

= V b∂bf. (6.53)
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For the directional derivative of a vector along the curve, the covariant gradient ∇ now
includes Christoffel symbols. Thus for a vector W,

DW

Dλ
= V · ∇W, (6.54)

or, expressed in components,(
DW

Dλ

)a

=
(
V · ∇W

)a
(6.55)

= V b
(
∇bW

)a
(6.56)

= V b (∂bW
a + Γa

bcW
c) (6.57)

=
dW a

dλ
+ Γa

bcV
bW c. (6.58)

We can apply this to find the acceleration 4-vector. Let the world-line of an object
be parameterized by its proper time τ , with tangent vector the 4-velocity U. Then the
4-acceleration is

a =
DU

Dτ
= U · ∇U; (6.59)

aa = U b
(
∇bU

)a
= U b (∂bU

a + Γa
bcU

c) (6.60)

=
dUa

dτ
+ Γa

bcU
bU c. (6.61)

Note the similarity with the geodesic equation, equation (6.47): The geodesic equation
can now be written in a very simple form:

a = 0 . (6.62)

6.5 Newton’s Law of motion

Newton’s 2nd law becomes, for an external force fa

fa = maa = m

(
DU

Dτ

)a

. (6.63)

If fa = 0, an object follows a geodesic.
We can now describe the apparent acceleration of component a of the 4-velocity, Ua:

dUa

dτ
=

1

m

(
fa − Γa

bcU
bU c
)
. (6.64)

The first term on the RHS arises from external forces, while the second term arises from
fictitious inertial forces, including gravity.
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6.6 Twin Paradox

In the year 2000, one twin sets off for a distant planet, while the other twin stays home.
Flight Plan (in ship time = proper time):

a. 5 year acceleration 1g ≈ 10 ms−2, the surface acceleration of the Earth.

b. 5 year deceleration 1g.

c. 1 year on planet.

d. 5 year acceleration 1g.

e. 5 year deceleration 1g.

In relativistic units g ≈ 1.03yr−1.
When does the twin arrive back on Earth?
We need to compare Earth time tE with the proper time τ . Conveniently, as measured

in the Earth frame the zeroth component of the 4-velocity U0
E is

U0
E =

dtE
dτ

= γ. (6.65)

So (setting tE = τ = 0 at the start of the journey)

tE(τ) =

∫ τ

0

γ(τ ′) dτ ′. (6.66)

Strategy: Compare Ua and aa in both the Earth and the spaceship frame. We will
ignore the y and z components, considering only the t and x components.

Ship: in the spaceship rest frame,

Ua
S (τ) =

(
1
0

)
. (6.67)

The astronauts feel a force of one Earth gravity, which allows them to walk around
the spaceship rather than float about. This force is the normal force from the floor acting
on the feet of the astronauts. For an astronaut of mass m, Newton’s second law states
that the normal force (in the forward S1 = x direction) is

F = mg. (6.68)

Let us write this in covariant form: the covariant Newton’s 2nd law reads

F a
S = m

(
DUS

Dτ

)a

= mg. (6.69)

Expanding the covariant derivative in terms of ordinary derivatives and Christoffel sym-
bols,

F a
S = m

(
dUa

S

dτ
+ Γa

SbcU
b
SU

c
S

)
=
F a

S

m
. (6.70)
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But in the ship’s rest frame

Ua
S =

(
1
0

)
= constant, (6.71)

dUa
S

dτ
= 0. (6.72)

Thus

F a
S = mΓa

S00. (6.73)

In particular,

Γ1
S00 = g (≈ 1.03 year−1). (6.74)

Thus Γ1
S00 gives the fictional (inertial) force felt by the astronauts. Also, as F a

SUSa = 0,
we must have F 0

S = 0 and Γ0
S00 = 0.

Earth:
Assume the Earth frame is an inertial frame, Γa

Ebc = 0, i.e. ignore the Earth’s own
gravity. Then (

DUE

Dτ

)a

=
dUa

E

dτ
+ 0. (6.75)

Now,

Ua
E(τ) =

∂Ea

∂Sb
U b

S(τ). (6.76)

The co-ordinate transformation between the Earth frame and the spaceship frame depends
on the speed and hence the position of the ship. The position of the ship is parameterized
by the proper time τ . For a ship travelling at speed V (τ) the Lorentz boost formula gives

∂Ea

∂Sb
=

(
γ(τ) γV (τ)
γV (τ) γ(τ)

)
. (6.77)

6.6.1 The rapidity

Let the rapidity φ be defined by φ = tanh−1 V . Thus the quantities V , γ = (1− V 2)
−1/2

,
and γV are given by simple hyperbolic functions:

V = tanhφ, (6.78)

γ = coshφ, (6.79)

γV = sinhφ. (6.80)

In terms of the rapidity, the transformation matrix has the simple form

∂Ea

∂Sb
=

(
coshφ(τ) sinhφ(τ)
sinhφ(τ) coshφ(τ)

)
. (6.81)
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Because both the velocity 4-vector and the covariant acceleration are tensors, they can be
readily transformed to Earth coordinates from the spaceship frame as in equation (6.76):

UE(τ) =

(
coshφ sinhφ
sinhφ coshφ

)(
1
0

)
(6.82)

=

(
coshφ(τ)
sinhφ(τ)

)
; (6.83)

DUE

Dτ
=

(
coshφ sinhφ
sinhφ coshφ

)
DUS

Dτ
(6.84)

=

(
coshφ sinhφ
sinhφ coshφ

)(
0
g

)
(6.85)

= g

(
sinhφ(τ)
coshφ(τ)

)
. (6.86)

Meanwhile, the ordinary derivative of Ua
E is

dUa
E

dτ
=

d

dτ

(
coshφ(τ)
sinhφ(τ)

)
(6.87)

= φ̇

(
sinhφ(τ)
coshφ(τ)

)
, (6.88)

where φ̇ = dφ/ dτ . Thus from equation (6.75), we find φ̇ = g, which integrates to

φ(τ) = gτ. (6.89)

We can now go back to equation (6.66). As U0
E = γ = cosh(gτ), we have

tE(τ) =

∫ τ

0

cosh(gτ)dτ ′ (6.90)

∴ tE(τ) =
1

g
sinh(gτ). (6.91)

Now g = 1.03yr−1, and so at τ = 5 years,

tE = sinh(5.15)/1.03 = 86.6yr. (6.92)

At this point, Earth time is 2086, Ship time is 2005. Similarly,

• the 5 year deceleration takes 86.6 years on Earth;

• 1 year on alien planet takes 1 year on Earth;

• the return journey takes 2× 86.6 years on Earth.

So the twin returns to Earth 21 years older, in the year 2347.
Note the asymmetry between the stay-at-home twin and the space-faring twin. Earth

people see the spaceship moving away and returning. But people on the spaceship also
see the Earth moving away and returning! However, there is no true symmetry here: only
the spaceship resides in a non-inertial rest frame. This results in a true difference between
the flow of time on the spaceship and on the Earth.



Chapter 7

Orbits

Everyone was silent for a minute. Then Filby said he was damned.

7.1 Noether’s Theorem

For any continuous symmetry of a physical system, there is a conserved
quantity.

This theorem is most often expressed in the context of Hamiltonian or Lagrangian
mechanics, either quantum or classical. For example, if H is the Hamiltonian for a
physical system, then:

a. If dH/ dt = 0 (H symmetric to time translation), energy is conserved.

b. If ∂H/∂x = 0 (H symmetric to translation in the x direction) then the x component
of linear momentum is conserved.

c. If ∂H/∂φ = 0 (H symmetric to rotation), then angular momentum is conserved

d. In electromagnetism, if H is independent of gauge, then charge is conserved.

e. In particle theory, gauge symmetry can imply conservation of other kinds of ‘charge’.
For example SU(3) symmetry implies conservation of ‘colour’ (strong force) charge.

To employ symmetry arguments in the analysis of orbits, we first prove a variant of
Noether’s theorem applicable to geodesics.

Theorem:
dpa

dτ
=
m

2
(∂agbc)U

bU c . (7.1)

Thus, for example, if ∂0gbc = 0, then dp0/ dτ = 0. In this case the energy E = p0 will
be conserved.

Proof 7.1
We derive the corresponding equation for the lowered form of the 4-velocity U. Here

U = p/m can be interpreted as energy-momentum per unit mass.

79
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First, we write Ua = gaeU
e and apply the product rule:

dUa

dτ
=

d

dτ
(gaeU

e) (7.2)

= gae
dU e

dτ
+ U edgae

dτ
. (7.3)

Apply the geodesic equation to the first term, and write d/ dτ = U b∂b in the second
term:

dUa

dτ
= gae

(
−Γe

bcU
bU c
)

+ U e
(
U b∂bgae

)
. (7.4)

Next, we can change the dummy variable e→ c in the last term, so that we can factor
out U bU c:

dUa

dτ
= gae

(
−Γe

bcU
bU c
)

+ U c
(
U b∂bgac

)
(7.5)

= (∂bgac − gaeΓ
e
bc)U

bU c. (7.6)

Note that ged is the inverse metric tensor, so by equation (6.34),

Γabc ≡ gaeΓ
e
bc =

1

2
gaeg

ed (∂bgcd + ∂cgdb − ∂dgbc) (7.7)

=
1

2
δa

d (∂bgcd + ∂cgdb − ∂dgbc) (7.8)

=
1

2
(∂bgca + ∂cgab − ∂agbc) . (7.9)

Thus

dUa

dτ
=

[
∂bgac −

1

2
(∂bgca + ∂cgab − ∂agbc)

]
U bU c (7.10)

=
1

2
(∂agbc + ∂bgac − ∂cgab)U

bU c, (7.11)

using gca = gac to combine the first two terms in equation (7.10).
Finally, the last two terms in equation (7.11) involve the factor (∂bgac−∂cgab), which is

anti-symmetric in b and c. But this factor double-contracts with U bU c, which is symmetric
in b and c. Contraction of symmetric and anti-symmetric tensors gives 0, i.e.(

∂bgac − ∂cgab

)
U bU c = 0 (7.12)

so we are left with
dUa

dτ
=

1

2
(∂agbc)U

bU c. (7.13)

QED

7.2 The Schwarzschild Metric

Consider the space surrounding a planet or star or black hole of total mass M . We will
assume that the central object is spherically symmetric (so we ignore rotation) and time
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independent (so we ignore time evolution). One can show from the Einstein field equations
that the metric line element is

dτ 2 =
(
1− rs

r

)
dt2 −

(
1− rs

r

)−1

dr2 − r2 dθ2 − r2 sin2 θ dφ2 . (7.14)

where rs ≡ 2GM is called the Schwarzschild Radius.
Equivalently the metric tensor is

gab =


(
1− rs

r

)
0 0 0

0 −
(
1− rs

r

)−1
0 0

0 0 −r2 0
0 0 0 −r2 sin2 θ

 . (7.15)

The Schwarzschild radius is quite small: for the Sun, M = M�, rs = 3km. The radius of
the sun, however, is R� = 7× 105km � rs. Thus for anything orbiting the sun, even in
a very low orbit, r > R� so the ratio rs/r � 1.

For the Earth, M = M⊕, rs = 0.886cm. Again, for anything orbiting the Earth,
rs/r � 1.

Also note that if we neglect the rs/r terms in the metric we get back to the Minkowski
metric.

7.2.1 Symmetries and Conserved Quantities

To find a planetary orbit, we solve the geodesic equation for objects moving in the curved
space described by the Schwarzschild metric. This is difficult to do directly. However we
can take advantage of two symmetries in the problem.

The two symmetries are time invariance and rotational invariance:

∂0gbc = ∂tgbc = 0 for all b, c = 0, 1, 2, 3 (7.16)

∂3gbc = ∂φgbc = 0 for all b, c = 0, 1, 2, 3. (7.17)

The corresponding conserved quantities are energy E and angular momentum L:

dp0

dτ
=

dE

dτ
= 0; (7.18)

dp3

dτ
=

dL

dτ
= 0. (7.19)

For massive particles we can define the energy per unit mass k = E/m and the angular
momentum per unit mass h = L/m. For constant rest mass h and k will also be constant
along a geodesic. We first consider k:

k = U0 = g0bU
b (7.20)

=
(
1− rs

r

)
U0. (7.21)
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As U0 = dt/ dτ , we have

dt

dτ
= k

(
1− rs

r

)−1

. (7.22)

Thus the Noether symmetry arguments lead to an expression for how co-ordinate time t
varies with proper time τ .

Next consider the angular momentum per unit mass h:

h = −U3 = −g3bU
b (7.23)

= r2 sin2 θ U3. (7.24)

Now U3 = dφ/ dτ , so

dφ

dτ
=

h

r2 sin2 θ
. (7.25)

Note how the velocity expressed as a vector U with upper indices Ua has a different
physical meaning from the form U with lower indices Ua. The vector U shows us where
the object is going (as it represents the tangent to the world line). The form U, on the
other hand, tells us how much energy and momentum (per unit mass) the object carries.

7.2.2 Orbits in the Equatorial Plane

Consider geodesics in the equatorial plane θ = π/2. For the solar system this plane is
called the ecliptic. (The constellations seen on the ecliptic are known as the zodiac.) For
motion on this plane dθ = 0 and sin θ = 1, so the Schwarzschild metric line element
simplifies to

dτ 2 =
(
1− rs

r

)
dt2 −

(
1− rs

r

)−1

dr2 − r2 dφ2. (7.26)

Let us find orbit equations in terms of h and k:

a. Divide the metric line element by dτ 2 and use equations (7.22) and (7.25) (with
sin θ = 1):

1 = k2
(
1− rs

r

)−1

−
(
1− rs

r

)−1
(

dr

dτ

)2

− h2

r2
(7.27)

=⇒ dr

dτ
=

√
k2 −

(
1 +

h2

r2

)(
1− rs

r

)
. (7.28)

This gives us a differential equation for dr/ dτ . Unfortunately, it is quite non-linear
and difficult to solve in this form.

Exercise 7.1

(a) Starting with equation (7.28), derive an expression for dr/dτ in the form

1

2

(
dr

dτ

)2

+ V (r) = C



7.2 The Schwarzschild Metric 83

where C is a constant, and the effective potential is

V (r) = −1

2

(
rs

r
− h2

r2
+
rsh

2

r3

)
.

What is the effective energy C?

(b) Find the radii r1 and r2, r1 < r2 where the effective potential has an extremum
(maximum or minimum). Show that if C = V (r1) or C = V (r2) then the
requirements for a circular orbit (dr/dτ = d2r/dτ 2 = 0) are satisfied. Show
that h ≥

√
3 rs for these orbits. Also show that r2 ≥ 3rs.

(c) Let h = 2rs. What are r1 and r2? Show that for the outer orbit at r2, V
′′(r2) > 0

and hence that this orbit is stable. Is the inner orbit at r1 stable?

b. To simplify the equation, we change the independent variable from τ → φ, and find
r(φ):

dr

dτ
=

(
dr

dφ

)(
dφ

dτ

)
=

(
dr

dφ

)(
h

r2

)
(7.29)

=⇒
(

dr

dφ

)2
h2

r4
= k2 −

(
1 +

h2

r2

)(
1− rs

r

)
. (7.30)

c. Next we change the dependent variable r → u = 1/r. We will denote differentiation
by φ with a prime, e.g. u′ = du/ dφ. Thus

r′ =
dr

dφ
=

dr

du

du

dφ
(7.31)

= − 1

u2
u′ (7.32)

=⇒
(
− u

′

u2

)2

u4h2 = k2 −
(
1 + h2u2

)
(1− rsu) (7.33)

=⇒ u
′2 =

k2

h2
− (1 + h2u2) (1− rsu)

h2
(7.34)

We now have an equation for u′ which at least has no terms in the denominator:

u
′2 =

(
k2 − 1

h2

)
+
rsu

h2
− u2 + rsu

3 . (Einstein) (7.35)

The corresponding Newtonian orbit equation leaves out the last term:

u
′2 = kN +

rsu

h2
− u2 , (Newton) (7.36)

where the Newtonian energy per unit mass is

kN =
V 2

2
− GM

r
=
V 2

2
− rs

2r
. (7.37)
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d. We can simplify further by differentiating with respect to φ:

2u
′
u
′′

=
rs

h2
u
′ − 2uu

′
+ 3rsu

2u
′

(7.38)

=⇒ u
′′

+ u =
rs

2h2
+

3rs

2
u2. (7.39)

Thus General Relativity predicts that orbits satisfy

u′′ + u =
rs

2h2
+

3rs

2
u2 . (Einstein) (7.40)

In contrast, the Newtonian orbit equation is

u′′ + u =
rs

2h2
. (Newton) (7.41)

Compare the relativistic correction term (the last term in the Einstein version) to
the linear term u:

3rsu
2/2

u
=

3

2

rs

r
= 3

GM

r
. (7.42)

For planets orbiting the sun at a radius r > 100R�,

3
GM�

100R�
∼ 10−7 (7.43)

and so the relativistic correction term results in very small deviations from the
Newtonian predictions. These deviations have, however, been observed!

Exercise 7.2

a. Consider a sphere of radius 1 as a 2-dimensional manifold with coordinates x1 = θ,
x2 = φ, and line-element

ds2 =
(
dθ2 + sin2 θdφ2

)
.

Show that geodesics have a conserved quantity (call it H).

b. Using the metric line element, or otherwise, derive an equation for dθ/ds in terms
of H.

c. Let X = cos θ. Show that X satisfies(
dX

ds

)2

= 1−X2 −H2.

d. Obtain a second-order differential equation for X(s) and write down its general so-
lution. Suppose a geodesic starts at co-latitude θ0 heading due East. Find X(s) and
hence θ(s) explicitly in terms of θ0. Show that the total length of the geodesic (i.e.
the length needed to go all the way around the sphere once) is independent of θ0.
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Figure 7.1: A visualization of the Schwarzschild Metric. More precisely, a 2-manifold imbedded
in three dimensional space which has the same spatial metric as a constant time equatorial
(t = constant, θ = π/2) slice of the Schwarzschild metric (equation (7.26)).

Exercise 7.3

a. Consider a surface embedded in 3 dimensional Euclidean space (e.g. the surface of a
bowl). Using cylindrical coordinates (r, φ, z), the surface is specified by the function
z = Z(r). Let the two coordinates on the surface be x1 = r and x2 = φ. Show that
the metric of the surface is given by

gab =

1 + Z ′2 0
0 r2

 . (7.44)

b. Next consider geodesics on the surface. Since the surface is purely spatial, we replace
τ by arclength s in the geodesic equations. Show that the metric has a symmetry,
and hence there exists a conserved quantity (call it h) along each geodesic. In other
words, find a quantity h such that dh/ds = 0.

c. Let u = 1/r and let u′ = du/dφ. Derive the equation

u′2 =

(
1

h2
− u2

)
1

1 + Z ′2 .

d. Now suppose Z(r) = 2
√
r − 1. Show that this gives a surface whose metric is the

same as the spatial part of the Schwarzschild metric, equation (7.26), (for θ = π/2)
in units where rs = 1 (see figure 7.1). What is the equation for u′2? How does this
compare with the orbit equation derived from the full Schwarzschild metric?

7.3 Precession of Mercury’s Orbit

Perihelion = Closest approach to the Sun.
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Observations show that the perihelion of Mercury precesses about 1000 arcsec / century.
Influences of the other planets account for all but 43” of this. Einstein found the 43”
could be explained by the extra term in the orbit equation. A numerical approach might
be to go back to the first order equation, equation (7.35), and integrate directly:∫

du√
(k2 − 1) /h2 + rsu/h2 − u2 + rsu3

=

∫
dφ. (7.45)

However, for planetary orbits we can exploit the fact that the relativistic correction
to Newtonian theory is very small. This will enable us to find a simple analytic solution
(approximate, but then so are numerical solutions!).

7.3.1 Method

The angle φ measures the net angle through which the planet has orbited the sun. During
the first orbit 0 ≤ φ ≤ 2π. During the second orbit, 2π ≤ φ ≤ 4π and so on. But each
successive orbit does not exactly follow the previous orbit, so for example u(2π) 6= u(0).
Thus the function u(φ) cannot only contain terms periodic in φ like sinφ. There may be
a linear term as well. We will solve for the function u(φ), then invert to obtain φ(u).

Now at perihelion r = rmin, so u = umax. We will compare successive values of φ(umax).
Because the orbits are not exactly alike,

φ(umax)︸ ︷︷ ︸
orbit 2

−φ(umax)︸ ︷︷ ︸
orbit 1

= 2π + δφ (7.46)

for some angle δφ. We will call δφ the precession.
But first we need to solve for u(φ). We will do this by writing this function as the sum

of the Newtonian solution plus a small correction term (we derive the Newtonian solution
below):

u(φ) = u0

 (1 + ε sinφ)︸ ︷︷ ︸
Newtonian Orbit

+ y(φ)︸︷︷︸
Correction

 ; (7.47)

u0 ≡ rs

2h2
. (7.48)

We plug this into the orbit equation to obtain a new differential equation for y(φ). As
y(φ) is small, we drop the non-linear terms (those in y2 etc) to obtain a linear equation
in y, which can then be readily solved.
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7.3.2 Newtonian Solution

First, look at the solution to the Newtonian equations 7.36 and 7.41. The second order
equation has sines and cosines as complementary functions and a constant as a particular
solution, so the general solution can be written

u(φ) = A cosφ+B sinφ+ u0. (7.49)

Comment: Here there are two unknown constants of integration, as expected for a
second order differential equation. These could be determined, for example, by setting
initial conditions u(φ0) and u′(φ0) at some angle φ0. However, we started with a first order
equation, equation (7.36), which should only have one constant of integration. What has
changed? When we differentiated to obtain the second order equation, we lost some
information about the orbit. In particular, we lost the term (k2− 1)/h2. This is the only
term which tells us about the energy k. A solution of the first order equation may be
characterized by just one of the initial conditions as well as k and h. The second order
equation loses the explicit k dependence. Of course, the energy will be derivable as a
function of the second initial condition, and vice-versa.

The perihelion occurs at minimum r, hence maximum u. Let us suppose this occurs
at φ0 = π/2. Then one initial condition gives

u′(
π

2
) = 0 ⇒ A = 0. (7.50)

Now plug into the first order Newtonian equation (7.36) (without the relativistic correction
term rsu

3). The result gives

B =

(
kN +

r2
s

4h4

)1/2

. (7.51)

Finally, define the eccentricity ε by

ε =
B

u0

(7.52)

to yield

u = u0 (1 + ε sinφ) . (7.53)

The eccentricity tells us the shape of the orbit. Thus ε = 0 gives a circle, 0 < ε < 1 gives
an ellipse, ε = 1 gives a parabola, and ε > 1 gives a hyperbola (the latter two are open
orbits where an object comes in from ∞, is deflected, and escapes to ∞). The eccentricity
of Mercury’s orbit is about ε = 0.21.

Note that for a circular orbit

ucirc = u0 =
rs

2h2
circ

(7.54)

⇒ hcirc =

(
rcirc

2rs

)1/2

rs. (7.55)

Thus for planetary orbits hcirc � rs.
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7.3.3 Relativistic Correction

We now substitute equation (7.47) into the full relativistic orbit equation (7.40). This
yields the following differential equation for y(φ):

y′′ + y =
3rsu0

2
((1 + ε sinφ) + y)2 (7.56)

=
3rsu0

2

(
(1 + ε sinφ)2 + 2 (1 + ε sinφ) y + y2

)
. (7.57)

We can ignore the y2 term, as y � 1. Next, compare the terms linear in y. There
are two terms: on the left hand side, with coefficient 1, and on the right, with coefficient
3rsu0 (1 + ε sinφ). The latter term is of order rs/r � 1. Neglecting this term gives

y′′ + y ≈ 3rsu0

2

(
1 + 2ε sinφ+ ε2 sin2 φ

)
. (7.58)

The terms on the right act as forcing functions for the harmonic oscillator on the left.
The most interesting forcing function is the 2ε sinφ term, as this is in resonance with
the oscillator (the complementary functions include sinφ). This resonance drives the
precession.

For initial conditions y(π/2) = 0, y′(π/2) = 0, the solution is

y(φ) =
3rsu0

2

[
(1− sinφ) + ε

(π
2
− φ
)

cosφ+
ε2

3

(
2− sin2 φ− sinφ

)]
(7.59)

=
3rsu0

2
ε
(π

2
− φ
)

cosφ+ periodic terms. (7.60)

Recall the discussion leading to equation (7.46). The first orbit has perihelion at
φ1 = π/2 , while the second orbit has perihelion at φ2 = 5π/2 + δφ. Solving u′(φ2) = 0
gives

δφ ≈ 3πrsu0. (7.61)

The mean radius is r̄ ≈ u−1
0 = 58× 106 km. Thus

δφ ≈ 0.1 arcseconds/orbit. (7.62)

The Mercury year is 88 earth days, making the precession 1 arcsecond every 880 days, or
43 arcseconds per century.
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7.4 Deflection of Starlight

As light travels from a star, its path is distorted by the curvature of space-time. Thus
photons passing near a massive object like the sun will curve around the object. When
the light is viewed, it will appear in the wrong place on the sky. This effect has been
seen not only for starlight in the sun’s gravitational field, but also for light from distant
galaxies or quasars passing by nearer galaxies on the way to Earth.

The effect on starlight is best seen during a solar eclipse. During an eclipse we can see
stars in the sky close to the sun without being swamped by daylight. Photons from these
stars receive the maximum deflection.

Figure 7.4 shows the path of the starlight. The photon starts at the star, with

u? ≈ 0; φ? = π +
∆

2
. (7.63)

Because of the gravitational deflection, we observe the photon coming in from the angle
φ = π −∆/2. Thus the angle of deflection is ∆.

First we look at the Newtonian prediction, then derive the relativistic deflection.

7.4.1 Newtonian Theory

The Newtonian orbit for m 6= 0 is, from equation (7.47)

u(φ) = u0 (1 + ε sinφ) ; u0 =
rs

2h2
=
GM�

h2
. (7.64)

The angular momentum per unit mass h is

h = r2φ̇ = rVφ. (7.65)

In figure 7.4, the photon travelling from the star to our telescope has its closest approach
(perihelion) at φ = π/2. At perihelion dr/dt = 0, so Vr = 0 and thus |V | = Vφ. But for a
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photon |V | = c = 1 in relativistic units. So

h = rmin ≈ R� (7.66)

if the starlight just grazes the surface of the sun on its way to our telescope. Thus

u(φ) =
GM�

R2
�

(1 + ε sinφ) . (7.67)

At the star, equation (7.63) gives

0 ≈ GM�

R2
�

(
1 + ε sin

(
π +

∆

2

))
(7.68)

≈ GM�

R2
�

(
1− ε

(
∆

2

))
, (7.69)

as sin(π + x) ≈ −x for small x. Thus ε ≈ 2/∆. We now have

u(φ) ≈ GM�

R2
�

(
1 +

2

∆
sinφ

)
. (7.70)

Finally, at φ = π/2 the starlight reaches r = R�, so

1

R�
≈ GM�

R2
�

(
1 +

2

∆

)
, (7.71)

≈ GM�

R2
�

(
2

∆

)
, (7.72)

using 2/∆ � 1. Thus

∆ ≈ 2GM�

R�
. (7.73)

7.4.2 Relativistic Theory

As photons are massless, we consider the orbit equations in the limit m→ 0. Photons do
have energy and momentum (and angular momentum), so we hold energy E = mk and
angular momentum L = mh constant. The first order equation (equation (7.35)) becomes

u
′2 =

(
E2 −m

L2

)
− rsum

2

L2
− u2 + rsu

3. (7.74)

In the limit m→ 0, then,

u
′2 =

E2

L2
− u2 + rsu

3 . (7.75)

Differentiation gives the second order equation

u
′′

+ u =
3

2
rsu

2 . (7.76)
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First, consider the rs = 0 case. Here M = 0 and space-time is flat:

u
′′

+ u = 0 (7.77)

=⇒ u = A cosφ+B sinφ (7.78)

(7.79)

Apply boundary conditions that the light reaches r = ∞ at φ = 0, and (again) that the
perihelion of the light path occurs at (r, φ) = (R�, π/2). As a result, A = 0 and B = R−1

� ,
i.e.

u =
1

R�
sinφ. (7.80)

This is the equation of a straight horizontal line (y = R�) in polar coordinates. Light
passing near a massive object, however, will be perturbed by the missing rs term. As in
the analysis of the precession of Mercury we try a small non-linear correction to u:

u(φ) =
1

R�
(sinφ+ y(φ)) (7.81)

where y(φ) << 1. Then equation (7.76) gives

1

R�
(− sinφ+ y′′) +

1

R�
(sinφ+ y) =

3rs

2R2
�

(sinφ+ y)2 (7.82)

=⇒ y′′ + y =
3rs

2R�
(sinφ+ y)2 . (7.83)

Include only the terms of lowest order in y and rs (as y, rs are both small):

y′′ + y ≈ 3rs

2R�
sin2 φ =

3rs

4R�
(1− cos 2φ). (7.84)

Combining complementary functions and particular integrals gives

y = A cosφ+B sinφ+ C +D cos 2φ+ E sin 2φ. (7.85)

We can determine the constants as follows:

a. Plugging equation (7.85) into equation (7.84) gives C = 3D, D = rs/4R� and E = 0.

b. At perihelion, y(π/2) = 0, so B = −2D.

c. Also, as seen in the figure, the photon path is symmetric about φ = π/2. Hence, for
example, y(0) = y(π), which implies A = 0.
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We now have
y =

rs

4R�
(3− 2 sinφ+ cos 2φ). (7.86)

Finally, we can apply the boundary conditions at the star, equation (7.4). These give

0 = R� u (π + ∆/2) (7.87)

= sin (π + ∆/2) +
rs

4R�
(3− 2 sin (π + ∆/2) + cos (2π + ∆)) (7.88)

= − sin(∆/2) +
rs

4R�
(3 + 2 sin(∆/2) + cos 2∆) (7.89)

≈ −∆

2
+

rs

4R�
(4 + Order(∆)). (7.90)

We can ignore the terms of order (rs/R�)∆, giving

∆ ≈ 2rs

R�
=

4GM�

R�
≈ 1.74 arcseconds. (7.91)

Thus relativity predicts a deflection almost exactly double the Newtonian result.

7.5 Energy Conservation on Geodesics

According to Newtonian theory, an object moving in a central gravitational field has
energy

E =
1

2
mV 2 +mΦ(r); Φ(r) = −GM

r
, (7.92)

where Φ(r) is the potential energy. We now show that for weak gravitational fields
(r � rs) and small velocities (V � 1), the relativistic energy is approximately the same
as the Newtonian energy, apart from the contribution from rest mass.

Recall the Schwarzschild metric line element in the equatorial plane, equation (7.26).
In terms of Φ,

dτ 2 = (1 + 2Φ) dt2 − (1 + 2Φ)−1 dr2 − r2 dφ2. (7.93)

Next, divide by dt2, using equation (7.21) for dτ/ dt:(
dτ

dt

)2

=
1

k2
(1 + 2Φ)2 (7.94)

= (1 + 2Φ)− (1 + 2Φ)−1

(
dr

dt

)2

− r2

(
dφ

dt

)2

(7.95)

= (1 + 2Φ)− (1 + 2Φ)−1 V 2
r − V 2

φ . (7.96)

Now Φ � 1 and V 2 � 1 so we can expand the right hand side, ignoring terms like Φ2 or
ΦV 2:

1

k2
(1 + 2Φ)2 ≈ (1 + 2Φ)− (1− 2Φ)V 2

r − V 2
φ (7.97)

≈ (1 + 2Φ)− (V 2
r + V 2

φ ) (7.98)

=
(
1 + 2Φ− V 2

)
. (7.99)
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Thus

k2 ≈ (1 + 2Φ)2

1 + 2Φ− V 2
(7.100)

≈ (1 + 4Φ)(1− 2Φ + V 2) (7.101)

≈ 1 + V 2 + 2Φ. (7.102)

Finally, we take the square root of this approximation, using (1 + x)1/2 ≈ 1 + x/2. With
E = mk the Newtonian correspondence becomes clear:

E ≈ m+
1

2
mV 2 +mΦ. (7.103)


